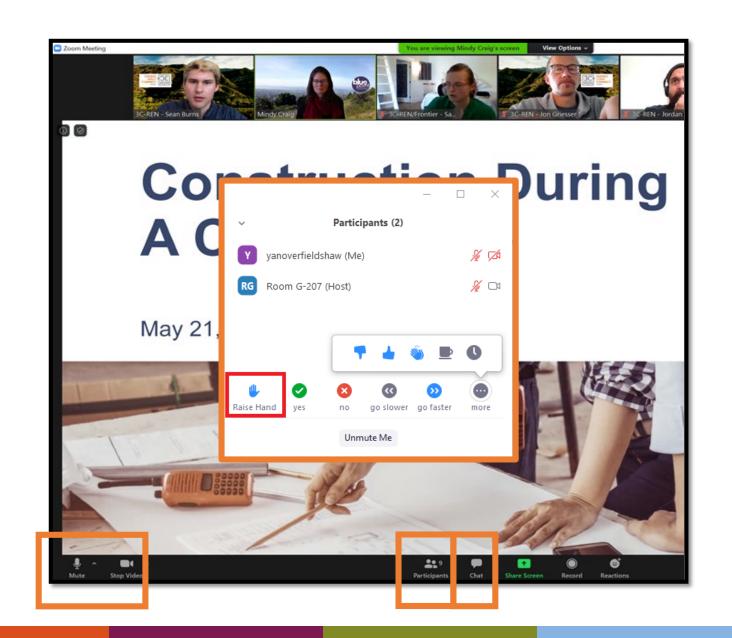


Thanks for joining us

HVAC Design For Code Officials: Reading and Understanding an ACCA Report -Manuals S, J, and D


Jennifer Rennick – In Balance Green Consulting

March 31st, 2022

Zoom Orientation

- Please be sure your full name is displayed
- Please mute upon joining
- Use "Chat" box to share questions or comments
- Under "Participant" select "Raise
 Hand" to share a question or comment
 verbally
- The session may be recorded and posted to 3C-REN's on-demand page.
 Feel free to ask questions via the chat and keep video off if you want to remain anonymous in the recording.

3C-REN: Tri-County Regional Energy Network

- Three counties working together to improve energy efficiency in the region
- Services for
 - Building Professionals: industry events, training, and energy code compliance support
 - Households: free and discounted home upgrades
- Funded by ratepayer dollars that 3C-REN returns to the region

Energy Code Coach Texting Service Now Available!

 Text the Energy Code Coach Team your questions at (805) 220-9991

 The Team will be responding to questions within 2 hours during normal business hours (Monday to Friday from 8 am to 5 pm).

Text anytime, response within one business day 805-220-9991

Or submit online: www.3c-ren.org/ecc

3C-REN Staff Online

Need help or have questions about 3C-REN?

Send us a message!

Today's Learning Objectives

- Understand the Code requirements and the goals behind those requirements
- Know the roles and responsibilities of the Energy Consultant,
 Plans Examiner, HERS rater, and the HVAC Installation
 Contractor
- Be able to describe the main sections of an ACCA 'Report' including Manuals S, J, D, and other forms you might see
- Recognize key areas that are necessary for proper documentation and what can be done for best practices

Agenda

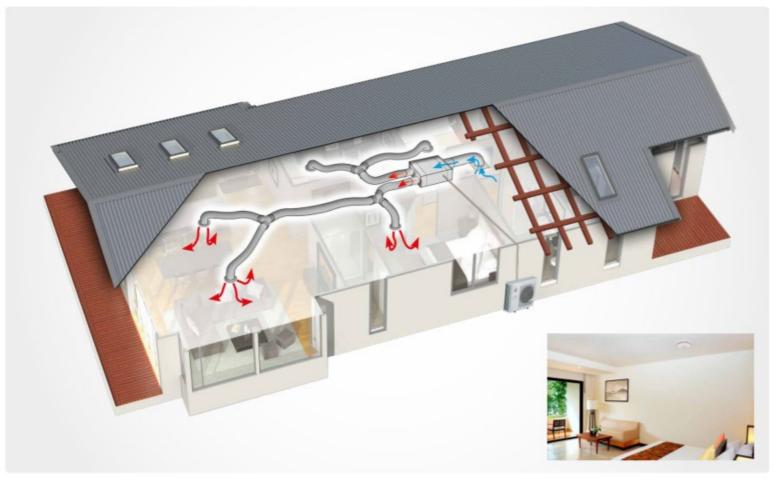
Right Sizing Heating, Cooling, and Air Distribution Systems in the California Building Code

ACCA Calculations in the Code...Roles and Responsibilities

Key Elements and Forms in ACCA Reports

Best Practices

Resources


Questions

Right Sizing Heating, Cooling and Air Distribution Systems in the California Building Code

Residential Heating, Cooling and Duct Design Impacts:

- Health and Welfare
- Energy Conservation
- Resource Conservation
- Occupant Comfort
- Consumer Protection

Heating, Cooling and Ventilation is part of the California Building Code

- California Mechanical Code Part 4
- California Energy Code Part 6
- CalGreen or California Green Building Standards
 Code Part 11
- All three reference the proper sizing and design of residential heating and cooling systems
- The Code allows a few methods for showing compliance:
 - ANSI/ACCA
 - ASHRAE
 - Or other approved method

Title 24 Building Standards Code

https://www.dgs.ca.gov/BSC

Part 1 - California Administrative Code

Part 2 - California Building Code

Part 2.5 - California Residential Code

Part 3 - California Electrical Code

Part 4 - California Mechanical Code

Part 5 - California Plumbing Code

Part 6 - California Energy Code

Part 7 - Reserved

Part 8 - California Historical Building Code

Part 9 - California Fire Code

Part 10 - California Existing Building Code

Part 11 - California Green Building Standards Code

Part 12 - California Referenced Standards Code

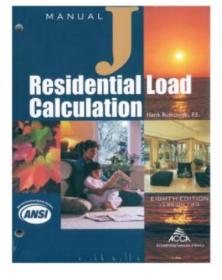
Part 11 Code Excerpt – Residential Mandatory Measure

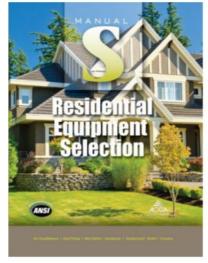
Excerpt: Section 4.507 under Chapter 4 of Title 24, Part 11 CalGreen

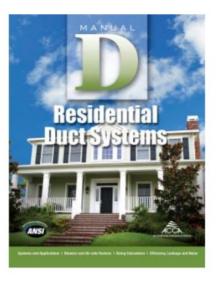
4.507.2 Heating and air-conditioning system design.

Heating and air-conditioning systems shall be sized, designed and have their equipment selected using the following methods:

- 1. The heat loss and heat gain is established according to ANSI/ACCA 2 Manual J—2016 (*Residential Load Calculation*), ASHRAE handbooks or other equivalent design software or methods.
- 2. Duct systems are sized according to ANSI/ACCA 1 Manual D—2016 (Residential Duct Systems), ASHRAE handbooks or other equivalent design software or methods.
- 3. Select heating and cooling equipment according to ANSI/ACCA 3 Manual S—2014 (Residential Equipment Selection) or other equivalent design software or methods.

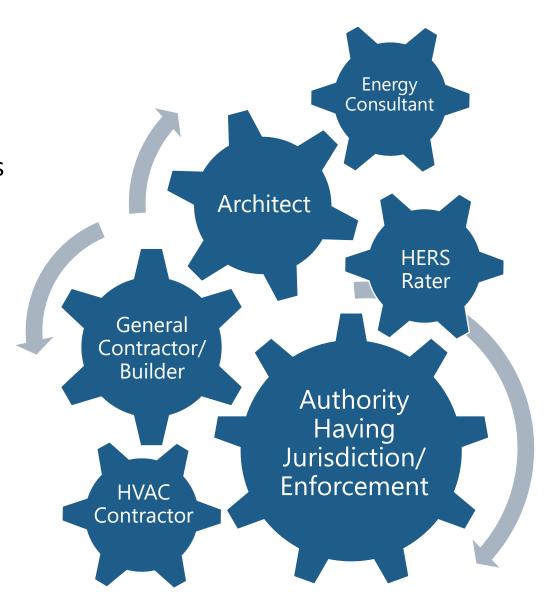

Exception: Use of alternate design temperatures necessary to ensure the systems function are acceptable.

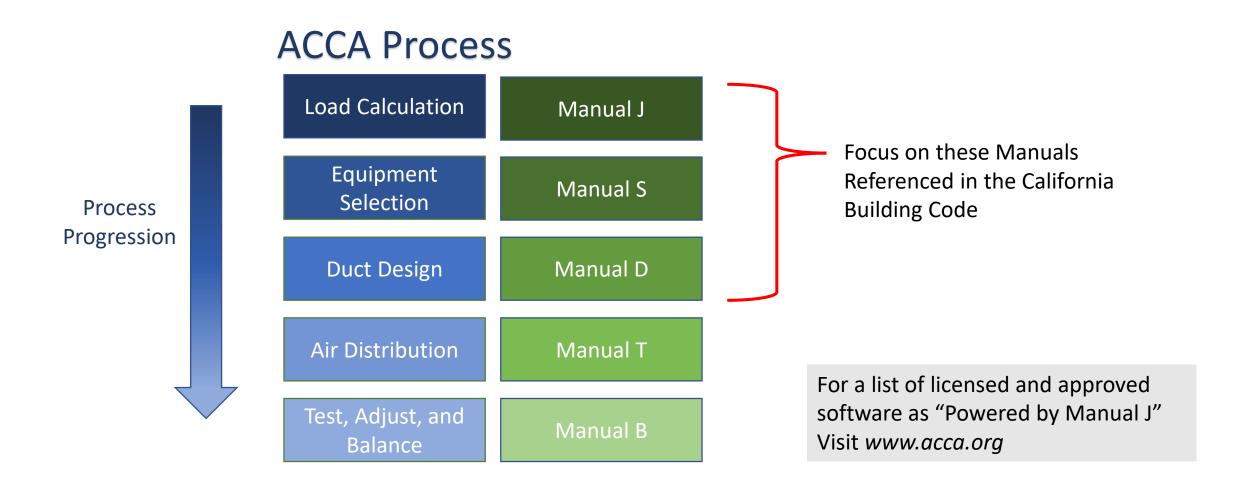

Part 6 Energy Code reinforces the above requirement for residential design, and Part 4 Mechanical Code (314.1(2)) includes Manual B (Balancing) and (601.2) Manual D.


ANSI/ACCA Manual J, D and S

The ACCA Manuals are common method for residential loads, equipment sizing and selection, and duct design.

- American National Standards Institute (ANSI) is a non-profit testing and standards organization
- Air Conditioning Contractors of America (ACCA) is a non-profit trade association
- Manual J, S, D, etc. are registered trademarks of ACCA
- ACCA Manual J8 refers to the Eighth Edition of Manual J (MJ8)




ACCA Calculations in the Building Code... Who does what?

Roles and Responsibilities

- Many players in the process
- Different roles depend on each other; some entities play more than one role
- ACCA Methodology is a tool set for the tradesperson - for the HVAC designer/installer
- ACCA (or equal) is required for Residential HVAC Design
- Many Energy Consultants offer:
 - Energy Code Documentation (i.e. Title 24 Energy Reports)
 - HERS Services
 - ACCA Reports

ACCA Residential HVAC Design Process

Parallel 'Title 24' - Energy Code Documentation

Appendix A Compliance Documents

Page 1

NOTE: For Documents and User Instructions, please visit our website at: http://energy.ca.gov/title24/2019standards

Doc Type	Doc Category	Category Description	Document Description				
CF1R's -	Certificate of Co	ompliance					
CF1R-	ADD-01-E	Additions	Prescriptive Additions Less Than 1,000 ft ²				
CF1R-	ADD-02-E	Additions	Prescriptive Additions – Simple NonHERS (paper version)				
CF1R-	ALT-01-E	Alterations	Prescriptive Alterations				
CF1R-	ALT-02-E	Alterations	Prescriptive Alterations HVAC				
CF1R- ALT-05-E Alterations			Prescriptive Alterations – Simple NonHERS (paper version)				
CF1R-	ENV-02-E	Envelope	Area Weighted Average Calculation Worksheet				
CF1R-	ENV-03-E	Envelope	Solar Heat Gain Coefficient (SHGC) Worksheet				
CF1R-	ENV-04-E	Envelope	Solar Reflective Index (SRI) Worksheet				
CF1R-	ENV-05-E	Envelope	Alternative Default Fenestration Procedure (NA6) Worksheet				
CF1R-	ENV-06-E	Envelope	Interior and Exterior Insulation Layers Workshe				
CF1R-	NCB-01-E	Newly Constructed Buildings	Prescriptive Newly Constructed Buildings and Additions Equal to or Greater Than 1,000 ft ²				
CF1R-	PLB-01-E	Plumbing (DHW)	Hydronic Heating System Worksheet				
CF1R-	PRF-01-E	Performance	Residential Performance Compliance Method				
CF1R-	STH-01-E	Solar Thermal	OG 100 Solar Water Heating Worksheet				
CF2R's -	Certificate of In	stallation					
CF2R-	ADD-02-E	Additions	Prescriptive Additions – Simple NonHERS (paper version)				
CF2R-	ALT-05-E	Alterations	Prescriptive Alterations – Simple NonHERS (paper version)				
CF2R-	ENV-01-E	Envelope-NonHERS	Fenestration Installation				
CF2R-	ENV-03-E	Envelope-NonHERS	Insulation Installation				
CF2R-	ENV-04-E	Envelope-NonHERS	Roofing – Radiant Barrier				
CF2R-	ENV-20-H	Envelope-HERS	Building Leakage Diagnostic Test				
CF2R-	ENV-21-H	Envelope-HERS	QJI - Framing Stage				
CF2R-	ENV-22-H	Envelope-HERS	QII – Insulation Installation Stage				
CF2R-	LTG-01-E	Lighting-NonHERS	Lighting - Single Family Dwellings				

19 Residential Compliance Document	ments

Appendix A Compliance Documents

D	-	~	_	٠

Doc Type	Doc Category	Category Description	Document Description
CF2R-	LTG-02-E	Lighting-NonHERS	Lighting - Multifamily Dwellings
CF2R-	MCH-01-E	Mechanical-NonHERS	Space Conditioning Systems
CF2R-	MCH-02-E	Mechanical-NonHERS	Whole House Fan
CF2R-	MCH-04-E	Mechanical-NonHERS	Evaporative Coolers
CF2R-	MCH-20-H	Mechanical-HERS	Duct Leakage Diagnostic Test
CF2R-	MCH-21-H	Mechanical-HERS	Duct Location Verification
CF2R-	MCH-22-H	Mechanical-HERS	Fan Efficacy
CF2R-	MCH-23-H	Mechanical-HERS	Airflow Rate
CF2R-	MCH-24-H	Envelope-HERS	Building Envelope Air Leakage Worksheet
CF2R-	MCH-25-H	Mechanical-HERS	Refrigerant Charge Verification
CF2R-	MCH-26-H	Mechanical-HERS	Rated Space Conditioning System Equipment Verification
CF2R-	MCH-27-H	Mechanical-HERS	Indoor Air Quality and Mechanical Ventilation
CF2R-	MCH-28-H	Mechanical-HERS	Return Duct Design and Air Filter Grille Device Sizing According to Tables 150.0-B or C
CF2R-	MCH-29-H	Mechanical-HERS	Duct Surface Area Reduction; R-Value; Buried Ducts
CF2R-	MCH-30-E	Mechanical-HERS	Ventilation cooling compliance credit
CF2R-	MCH-31-H	Mechanical-HERS	HERS Verified Whole House Fan
CF2R	MCH-32-H	Mechanical-HERS	Kitchen Ventilation
CF2R-	PLB-01-E	Plumbing-DHW-NonHERS	Multifamily Central Hot Water System Distribution
CF2R-	PLB-02-E	Plumbing (DHW)-NonHERS	Single Dwelling Unit Hot Water System Distribution
CF2R-	PLB-03-E	Plumbing (DHW)-NonHERS	Pool and Spa Heating Systems
CF2R-	PLB-21-H	Plumbing (DHW)-HERS	HERS Verified Multifamily Central Hot Water System Distribution
CF2R-	PLB-22-H	Plumbing (DHW)-HERS	HERS Verified Single Dwelling Unit Hot Water System Distribution
CF2R-	PVB-01-E	Photovoltaics-NonHERS	Photovoltaic Systems
CF2R-	PVB-02-E	Photovoltaics-NonHERS	Battery Storage Systems
CF2R-	SRA-01-E	Solar Ready	Solar Ready Areas
CF2R-	SRA-02-E	Solar Ready	Minimum Solar Zone Area Worksheet
CF2R-	STH-01-E	Solar Thermal	Solar Water Heating Systems

2019 Residential Compliance Documents

January 2019

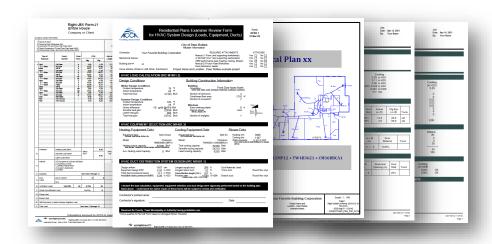
Appendix A Compliance Documents

Page 3

CF3R-	ENV-20-H	Envelope-HERS	Building Leakage Diagnostic Test
CF3R-	ENV-21-H	Envelope-HERS	QJI - Framing Stage
CF3R-	ENV-22-H	Envelope-HERS	QJI – Insulation Installation Stage
CF3R-	EXC-20-H	Existing Conditions	HERS Verification of Existing Conditions for Residential Alterations
CF3R-	MCH-20-H	Mechanical-HERS	Duct Leakage Diagnostic Test
CF3R-	MCH-21-H	Mechanical-HERS	Duct Location Verification
CF3R-	MCH-22-H	Mechanical-HERS	Fan Efficacy
CF3R-	MCH-23-H	Mechanical-HERS	Airflow Rate
CF3R-	MCH-24-H	Envelope-HERS	Building Envelope Air Leakage Worksheet
CF3R-	MCH-25-H	Mechanical-HERS	Refrigerant Charge Verification
CF3R-	MCH-26-H	Mechanical-HERS	Rated Space Conditioning System Equipment Verification
CF3R-	MCH-27-H	Mechanical-HERS	Indoor Air Quality and Mechanical Ventilation
CF3R-	MCH-28-H	Mechanical-HERS	Return Duct Design and Air Filter Device Sizing According to Tables 150.0-B or C
CF3R-	MCH-29-H	Mechanical-HERS	Duct Surface Area Reduction; R-value; Buried Ducts Compliance Credit
CF3R-	MCH-31-H	Mechanical-HERS	HERS Verified Whole House Fan
CF3R-	MCH-31-H	Mechanical-HERS	Kitchen Ventilation
CF3R-	PLB-21-H	Plumbing (DHW)-HERS	HERS Verified Multifamily Central Hot Water System Distribution
CF3R-	PLB-22-H	Plumbing (DHW)-HERS	HERS Verified High Rise Residential/Hotel/Motel Single Dwelling Unit Hot Water System Distribution
NRCV-	мсн-04-н	Mechanical-HERS	Duct Leakage Diagnostic Test
NRCV-	MCH-24-H	Mechanical-HERS	Building Envelope Air Leakage Worksheet
NRCV-	MCH-27-H	Mechanical-HERS	Indoor Air Quality and Mechanical Ventilation
NRCV-	PLB-21-H	Plumbing (DHW)-HERS	HERS Verified Multifamily Central Hot Water System Distribution
NRCV-	PLB-22-H	Plumbing (DHW)-HERS	HERS Verified High Rise Residential/Hotel/Motel Single Dwelling Unit Hot Water System Distribution

2019 Residential Compliance Documents

January 2019



What Key Elements and Forms could be in an ACCA Report?

What can you expect to see in an ACCA Report?

- General Information
 - Plans Examiner Review Form
 - Project Summary Form
- Manual J
 - J1 Forms and worksheets
 - Loads Short Form
 - Building Analysis
- Manual S
 - Manual S Compliance Form
- Manual D
 - Duct Layout / Distribution Sketch
 - Friction Rate Worksheet
 - Duct Design Summary

- Equipment Spec Sheets
 Original Equipment Manufacture (OEM)
 Performance Data
 - Model /Make
 - Efficiency
 - Capacity (output) –Heating and Cooling
 - External Static Pressure and Fan (CFM)
 Performance Data –Blower Data

Ask for the ACCA **Residential Plans Examiner Review Form**

REQUIRED ATTACHMENTS	ATTA	CHED
Manual J1 Form (and supporting worksheets):	Yes	No 🗆
or MJ1AE Form* (and supporting worksheets):	Yes	No 🗆
OEM performance data (heating, cooling, blower):	Yes	No 🗌
Manual D Friction Rate Worksheet:	Yes	No 🗌
Duct distribution sketch:	Yes	No 🖂

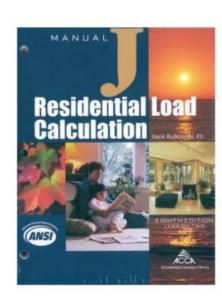
Need	ed,	but o	often	missing:

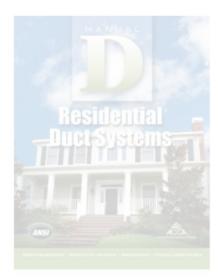
- *OEM system performance spec sheets or cut sheets*
- Friction Rate Worksheet

Residential Plans Examiner Review Form for HVAC System Design (Loads, Equipment, Ducts)

Heating output capacity: 57000 Btuh For taked external class prescure for airflow Heating output capacity: 57000 Btuh Sensible cooling capacity: 30460 Btuh Sensible cooling capacity: 24210 Btuh Sensible cooling capacity: 6250 Btuh HVAC DUCT DISTRIBUTION SYSTEM DESIGN (IRC M1601.1) Design airflow: 1167 cfm Longest supply duct: 206 ft Duct Materials Used Equipment design ESP: 0.50 in H20 Longest return duct: 82 ft Trunk duct: Round flex: Total device pressure (ASP): 0.20 in H20 Total device pressure (ASP): 0.20 in H20 Friction rate: Friction rate: Friction rate: Friction rate: Friction rate: Identify the load calculation, equipment, equipment selection and duct design were rigorously performed based on the building plan listed above. I understand the claims made on these forms will be subject to review and verification.	Contractor: Mechanical license: Building plan #: Home address (Street	xx	e Building Corp		or MJ1A OEM pe Manual	J1 Form (and AE Form" (and erformance da D Friction Ra stribution sket		orksheets): orksheets): ooling, blower):	ATTACHED Yes No Yes
HVAC EQUIPMENT SELECTION (IRC M1401.3) Heating Equipment Data Equipment type: Gas furnace Equipment type: Split AC Heating cfm: 1068 Cooling Comment type: TW483621+CM368BCA1 Heating output capacity: 57000 Btuh Heat pump. etc. Split AC Heating cfm: 1167 Static pressure: 0.50 in H20 Aux. heating output capacity: 0 Btuh Latent cooling capacity: 30460 Btuh Aux. heating output capacity: 0 Btuh Latent cooling capacity: 6250 Btuh HVAC DUCT DISTRIBUTION SYSTEM DESIGN (IRC M1601.1) Design airflow: 1167 cfm Longest supply duct 206 ft Trunk duct: Round flex: Total device pressure losses: 0.3 in H20 Total device pressure losses: -0.3 in H20 Total device pres	Design Condition Winter Design Condition temperature Indoor temperature Total heat loss: Summer Design Contdoor temperature Indoor temperature Grains difference: Sensible heat gains	ons nditions re: :: conditions re: ::	19 68 31103 102 75 9 gr/lb @50% F 22836	°F °F Btuh °F °F 국H Btuh	Building Orientation: North, East, W Number of be Conditioned f Number of oc Windows Eave overhar Internal shade	ect, South, Northe edrooms: floor area: ecupants: ng depth:	Front Door	faces North utheast, southwest 3 1716 ft² 7	Eave
Design airflow: 1167 cfm Longest supply duct 206 ft Duct Materials Used Equipment design ESP: 0.50 in H2O Longest return duct: 82 ft Trunk duct: Round flex: Total device pressure losses: -0.3 in H2O Available static pressure (ASP): 0.20 in H2O Friction rate: Friction rate: -0.0770 Friction Rate = ASP+(TELX:ttto) in/100ft Branch duct: Round flex:	Total heat gain: HVAC EQUIPM Heating Equipment type: Equipment type: Model: Heating output cap Heat flumps - capacit	nent Data Boller, etc. The cacity: y at witnier decign o	23742 COTION (IRC Gas furnace Champion MREDBOB12MP12 57000 Bluh utboor conditions	M1401. Coolin Equit Mode	ag Equipment ment type; conditioner, Heat pump, e el: cooling capacity: ible cooling capacity	Data TW4B3621+0 300 7. 243	Split AC Champion CM36BBCA1 460 Btuh 210 Btuh	Blower Data Heating ofm: Cooling ofm: Static pressure: Fan't rated extern	1068 1167 0 50 in H20
Contractor's printed name:	Design airflow: Equipment design EX Total device pressun Available static pre	SP: e losses: ssure (ASP): ellculation, eq	1167 cfm 0.50 in H20 -0.3 in H20 0.20 in H20	Longest: Longest Total effe Friction Friends	supply duct: return duct: rate: rate: rotion Rate = ASP+(TEL)	206 ft 82 ft 287 ft 0,070 in/100	Trunk du Oft Branch d	ct: luct:	Round flex vir Round flex vir
Contractor's signature.		d name:	aims made on th	ese forms	will be subject to r	eview and v		Date:	

served for County, Town Municipality or Authority having jurisdiction use


'Home qualifies for MJ1AE Form based on Abridged Edition Checklist



Manual J Load Calculation

'Load' refers to the heating and cooling capacity the mechanical equipment will need in order to meet occupant comfort. Method used to determine the size of the mechanical equipment.

- Approved computer software
- Energy/Computer Model includes:
 - Location / Climate Data
 - Building Orientation
 - Wall Assemblies
 - All windows and Skylights
 - All doors
 - Roof Assembly(s)
 - Floor/Slab Assembly(s)
 - Infiltration
 - Ventilation
 - Occupants

MJ8 and J1 Forms-What to Check?

Items to Verify

- Climate / Location Data
- Duct Location
- Building Component Orientation especially Windows
- Windows, Skylights, Glass Doors
- Wall Assemblies
- Roof Assembly(s)
- Floor/Slab Assembly(s)
- Infiltration
- Ventilation
- Occupants / Internal Gains
- Solid Doors

Useful Info

- Reference Joint Appendices JA2
- Entirely in Conditions Space (?)
- South / West -very important East / North -less important
- Code U-0.30, SHGC-0.23
- 2x6 R-19 U-o.074
- R-30 Attic, U-0.031
- Floor R-19 U-0.037; Slab F-0.73
- Semi-tight (5 ACH50)
- Per Title 24 and mech design
- Per bedroom count
- Code U-0.20

ITEMS TO VERIFY

The key load elements, grouped in roughly decreasing levels of impact on the overall contribution to the loads, are:

_		
LOAD	H I G H	 ✓ Design Temperatures (Indoor and Outdoor) ✓ Windows, Glass Doors and Large Skylights (shading, overhangs, etc.) ✓ Ducts (location, leakage and duct wall R-values) ✓ Ceilings under an attic (R-values, roof material, roof color)
IMPACT ON	M E D I U M	✓ Small Skylights ✓ Infiltration ✓ Ventilation
	L O W	✓ Appropriately Insulated Floors ✓ Appropriately Insulated Walls ✓ Internal Gains

Excerpted from the ACCA Manual J Brochure

Form J1 and Worksheet

Looking for 'Red Flags'

- Notice the general building tree: Wall -Glazing and Orientation
- U-values look valid; match T24?
- Window areas look reasonable?
- Floor and Ceiling areas align?

L	-								
		Ту	Construction number	U-value (Btuh/ft².ºF)	Or	H ¹ (Btu	TM h/ft²)	Area (or perim	(ft²) nete
						Heat	Cool	Gross	1
	111	*	12F-0sw 10D-v 2 glazing, clr low-e 12F-0sw 10D-v 2 glazing, clr low-e 12F-0sw 10D-v 2 glazing, clr low-e 1 glazing, clr low-e 1 glazing, clr low-e 1 glazing, clr low-e 2 glazing, clr low-e 2 glazing, clr low-e 1 glazing, clr low-e 2 glazing, clr low-e	0.065 0.300	ne ne ne ne ne se	2.69 12.42 14.42 1	0.96 13.63 19.47 19.47 19.47 19.47 19.47 0.96 13.33 16.83 16.83 16.83 17.86 17.86 17.86 17.86 17.86 19.47 19.47 19.47 19.47 19.47 19.47 19.47 19.47 19.47 10.00 0.76 0.40 0.00	1173 84 8 48 16 20 20 978 49 10 36 20 28 32 13 14 35 765 42 20 21 1029 8 48 48 16 20 30 459 21 3156 798 2242	
va a n		F	22A-tpl	0.989	0.11	40.94 0.30. SH	0.00	116	
WV.	3. 1	DIVIDITA	a. Oldaa Duula	- 600	CU-	v.ov. on	ICIC-U.Z.)	

'Useful Info'

- Windows, Skylights, Glass Doors
- Wall Assemblies
- Roof Assembly(s)
- Floor/Slab Assembly(s)

- Code U-0.30, SHGC-0.23
- 2x6 R-19 U-o.074
- R-30 Attic, U-0.031
- Floor R-19 U-0.037; Slab F-0.73

Right-J8® Form J1 Entire House

Company or Client

Apr 14, 2021 Date:

Company Contact Information

Right-J® Worksheet Entire House

Date: May 24, 2021

HP1 87.0 ft 1512.0 ft²

2021-Apr-22 11:29:50

716 5744 2343

9096 296

82%

Company Name Company Contact Information S-Clg Room name Exposed wall Room height 124 ft Room dimensions 3166.1 ft² Construction number U-value Or (Btuh/tt2°F) Area (ft²) or perimeter 0 0 389 2982 184 0 0 690 2147 254 0 Heat W 12F-0sw

G 100-v
G 2 glazing, cir low-e
W 12F-0sw 2 59 12 42 1 0.055 Pe 0.300 Pe 0.3 0.916 13.63 19.47 19.47 19.47 19.47 10.96 13.33 16.83 16.83 16.83 17.86 16.83 17.86 17.86 19.47 1.00 19.47 1.00 19.47 1.00 10.40 0.00 0 209 2827 806 0 968 118 9372 1197 0 281 G 2 glazing, cir low-e
G 2 glazing, cir low-e G 2 glezing, cir low-e G 2 glezing, cir low-e G 2 glezing, cir low-e 125-0av 400-y 397 G 10D-v
G 2 glezing, cir low-e
G 2 glezing, cir low-e G 2 glazing, cir low-e 12F-0ew 2 glazing, cir low-e 2 glazing, cir low-e 2 giszing, cir low-e 2 giszing, cir low-e 2 giszing, cir low-e 2 giszing, cir low-e 1169 1900 20983 41 c) AED excursion Envelope loss/gain 30343 4150 7261 878 3795 10024 21024 Subtotal (lines 6 to 13) 37605 23005 5028 3290

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

37606 15337

52942 1933

23005 18768

Room area

- wrightsoft

Less external load

Total room load Air required (cfm)

Less transfer Redistribution Subtotal

Duct loads

MJ8 – Form J1

Looking for 'Red Flags'

Quick check on the Duct Loads... Does this value look reasonable?...lots of zeros ... Verify that the ducts are completely within the conditioned space.

<u> </u>									
	Infiltration	Heating Load (Btuh)			0.34		3812		
12		Sensible Load (Btuh)		ACH	0.15	WAR 1.00		487	
		Latent Load (Btuh)			0.15				-254
13	Internal	a Occupants at 230 a b Scenario number c Default Adjustments d Custom Appliances	3	h		0		0 1900 0	0
		e Plants							60
14	Subtotals		(Sum lines 6 thr	ough 12		27714	42312	-194
	Duct	EHLF & ESGF	0	0		0	0		
	II-								
15	Loads	FLG							
16	Ventilation Loads	FLG Vent Cfm	96	E Cfm	96		423	123	-494
		Vent Cfm	96	E Cfm Gal/Day	96 0		423		-494
16	Ventilation Loads	Vent Cfm	96						-494
16 17	Ventilation Loads Winter Humidification	Vent Cfm	96				0		-494
16 17 18	Ventilation Loads Winter Humidification Piping Load Blower Heat	Vent Cfm					0	123	-494

Right-J8® Form J1 Entire House

Company or Client

Company Contact Information

1 Name of Room 2 Running Feet of Exposed Wall 3 Celling Ht (Ft) and Gross Wall Area (SqFt) 4 Room Dimensions (Ft) and Floor Plan Area (SqFt)

5	Celling Slope (Deg.) and Gross Celling Area	(SQFt)			0	•	2193.5	5 ft²	0	•	813.0	0 ft²
	Type of	Const.,	Panel	н	тм	Area or		Btuh		Area or		Btuh	
	Exposure	Number	Faces	Hig.	Clg.	Length	Heating	8-Clg	L-Cig	Length	Heating	8-Cig	L-Cig
6	Wall Glaz Wall	12C-0sw 1D-c2ov 14F-0	0	2.82 17.67 10.57	1.59 16.46 4.57	531 60 95	1328 1065 999	750 992 432		162 24 0	389 424 0	220 395 0	
i	Wall	120-0sw	e	2.82	1.59	257	689	389		0	0	0	
11	Wall	10-c2ov 14F-0	e e	17.67 10.57	58.57 4.57	12 158	216 1665	718 720		0	0	0	
	Wall	12C-0sw 1D-c2ov	SC	2.82 17.67	1.59 47.22	25 14	34 239	19 637		0	0	0	
	Wall	12C-0sw 1D-c2ov	5	2.82 17.67	1.59 24.54	797 180	1680 3178	949 4414		387 122	690 2147	389 2982	
	-Door	1100		12.09	8.77	21	254	184		21	254	184	
	Wall	14F-0 12C-0sw	SW	10.57 2.82	4.57 1.59	162 25	1713 37	740 21		0	0	0	
	Glaz Wall	1D-c2ov 12C-0sw	SW	17.67 2.82	47.22 1.59	13 504	221 590	590 333		0 234	209	118	
	Glaz	1D-c2ov 169-30ed	w	17.67 0.99	58.57	295 2194	5208	17265 3229		160	2827 806	9372 1197	
	Flor	19A-19cvcp	-	1.19	1.47 0.35	889	2176 1058	307		813 0	0	0	
	Flor	19A-19cvcp	-	1.19	0.35	1305	1553	451		813	968	281	
_	Infiltration	Heating Load (Btuh)	!		0.34		3812				1169		
12		Sensible Load (Btuh)		ACH		WAR 1.00		487		1.00		149	
		Latent Load (Btuh)			0.15				-254	1			
13	Internal	a Occupants at 230 an b Scenario number c Default Adjustments		h		0		0 1900	0	0		0 1900	
		d Custom Appliances e Plants						0	60 0			0	
14	Subtotals			Sum lines 6 thr	ough 12		27714	42312	-194		9883	20983	
15	Duct Loads	EHLF & ESGF		0	0		0	0			0	0	
		ELG							0				
16	Ventilation Loads	Vent Cfm	96	ECfm	96		423	123	-494		141	41	-
17	Winter Humidification	on Load		Gal/Day	0		0				0		
18	Piping Load						0				0		
19								0				0	
20	 	atent Moisture Migration I						6786				3795	
21	Total Load		8	um lines 13 thr	much 19		28138	42435	0		10024	21024	

Load Short Form

Helpful Information:

See Climate Design Data at a glance.

Ask, do these Outside dry bulb (db) temperatures match the location?

Are they from the California Joint Appendices JA2?

Note: California uses inside dry bulb (db) temperature of 68 deg F for winter heating (Htg) and 75 deg F for summer cooling (Clg)

See the rooms and floor areas, and their relative load (Btuh) impact at a glance.

Load Short Form

Your Favorite Building Corporation

Job: XXYZX
Date: August 28, 2020
By: Your Name

mpany Contact Information

Space thermosta

Project Information

For: Project Name and Location...Paso Robles example project

Design Information							
	Htg	Clg		Infiltration			
Outside db (°F)	19	102	Method		Simplified		
Inside db (°F)	68	75	Construction quality		Semi-tight		
Design TD (°F)	49	27	Fireplaces		1 (Semi-tight)		
Daily range	-	H	-				
Inside humidity (%)	50	50					
Moisture difference (gr/lb)	41	-19					

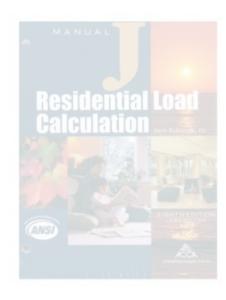
HEATING EQUIPMENT

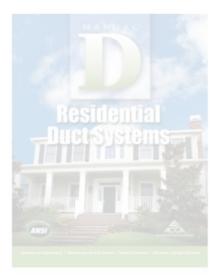
COOLING EQUIPMENT

Make Champion CHAMPION HEATING AND COOLING CHAMPION HEATING AND COOLING Trade Model TM9E060B12MP12 Cond TW4B3621 203324457 Coil CM36BBCA1 AHRI ref 202694376 Efficiency 12.2 EER, 14 SEER 60000 Btuh Sensible cooling 28000 Btuh 57000 Btuh Heating output Latent cooling 7000 Btuh Total cooling 35000 Btuh 1068 cfm 1167 cfm Actual air flow Actual air flow Air flow factor 0.034 cfm/Btuh Air flow factor 0.051 cfm/Btuh Static pressure 0.50 in H2O Static pressure 0.50 in H2O

Load sensible heat ratio

ROOM NAME	Area (ft²)	Htg load (Btuh)	Clg load (Btuh)	Htg AVF (cfm)	Clg AVF (cfm)
Entry	67	3163	917	109	47
M.T.	22	0	0	0	0
Lau.	72	2137	1459	73	75
Opt. Bed 3	135	1736	1928	60	99
Kitchen/Dining	446	7096	7068	244	361
Bed 2	159	2419	2123	83	109
M. Ba.	89	2758	748	95	38
Living	266	3247	2584	112	132
Bath	66	1027	604	35	31
Coat	30	0	0	0	0
Hall	99	3065	2415	105	123
M. Bed	175	4455	2992	153	153
Pan.	25	0	0	0	0
M. Clo.	66	0	0	0	0


Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.


wrightsoft* Right-suites Universal 2019 19.0.19								
Plan XX Other d equip loads Equip. @ 1.00 RSM Latent cooling	1716	31103 0	22836 0 22836 906	1068	1167			
TOTALS	1716	31103	23742	1068	1167			

Manual S Equipment Selection

Based on the Load Calculation from Manual J –may need refinement after the duct design process

- Use Manufacture's Data
- Adjust AHRI standard values for a dry climate; CA Joint Reference Appendices JA2 Climate Data (Title 24 Part 6)
- Heating Capacity (Output)
- Cooling Capacity (Output)
- Blower Performance Data Tables
 - External Static Pressure (ESP)
 - Fan CFM at the rated Capacity

Manual S Compliance Report

Climate Data match the location and JA2? Indoor Design DB (dry bulb) 75 deg F for summer?

Does Capacity meet the load? Is it within 100 – 115% If not, is there a smaller unit available

Indoor Design DB (dry bulb) 68 deg F for winter?

Does Capacity meet the load? Is it within 100 – 140% If not, is there a smaller size available? Was the equipment sized for the blower /fan?

Manual S Compliance Report

an XX

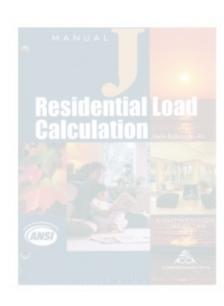
Your Favorite Building Corporation

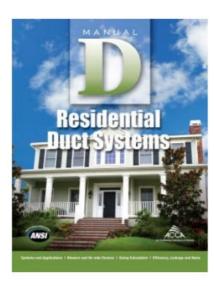
Date: August 28, 2020 By: Your Name Plan: xx

Company Contact Information

Project Information

For: Project Name and Location...Paso Robles


		Cooling Equipment	
	Design Conditions		
$\left\{ -\right\}$	Outdoor design DB: 102°F Outdoor design WB: 67.4°F Indoor design DB: 75.0°F Indoor RH: 50%	Sensible gain: 22836 Btuh Latent gain: 906 Btuh Total gain: 23742 Btuh Estimated airflow: 1167 cfm	Entering coil DB: 75.7°F Entering coil WB: 62.6°F
	Manufacturer's Performance D	ata at Actual Design Conditions	
	Equipment type: Split AC Manufacturer: Champion Actual airflow: 1167 cfm Sensible capacity: 24210 Btuh Latent capacity: 6250 Btuh Total capacity: 30460 Btuh	Model: TW4B3621+CM36BBCA1 106% of load 690% of load 128% of load SHR: 79%	
		Heating Equipment	
	Design Conditions		
_	Outdoor design DB: 19.0°F Indoor design DB: 68.0°F	Heat loss: 31103 Btuh	Entering coil DB: 67.5°F
	Manufacturer's Performance D	ata at Actual Design Conditions	
	Equipment type: Gas furnace Manufacturer: Champion Actual airflow: 1068 cfm Output capacity: 57000 Btuh	Model: TM9E060B12MP12 183% of load	Temp. rise: 50 °F


Meets all requirements of ACCA Manual S.

Manual D Duct Design Influences Energy Use and Comfort and Equipment Life

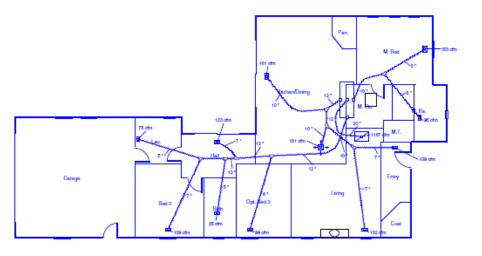
- Duct Layout Sketch
- Specialized Software is useful
- Calculates duct sizes /diameter
- Takes into account:
 - Duct layout
 - Duct material, i.e. sheet metal, flex, other
 - Duct profile / shape
 - Duct lengths
 - Connectors, Reducers, other Fittings
 - Tees and Splitter Wyes
 - Elbows -Radius or square

Duct Layout Sketch

Basic floor plan is drawn to scale

User chooses from a library of preferred duct and connector types for the duct system

The user draws the preferred duct runs (branch and trucks or radial pattern, etc) and register locations


Per length of duct, the size / diameter is calculated and called out on the plan

The supply air volume rate (cfm –cubic feet per minute) is called out at each register

The return air volume and register is labeled on the plan

Typical Plan xx

Champion TM9E060B12MP12 + TW4B3621 + CM36BBCA1

Job #: 0xxyzx
Performed by Your
Name for: Project Name and

Your Favorite Building Corporation

Project Name and ocation...Paso Robies example project Scale: 1: 140
Page 1

2020-Aug-31 11:00:42 ... Sample Project Paso Plan XX.

Duct System Summary

External static pressure (ESP) comes from the Manufacture Blower Performance

Pressure losses are determined from product data

Actual air flow and Total effective length (TEL) are calculated as part of Manual D

Heating Equipment Example

Blower Performance CFM - Any Position (without filter)

		Airflow Data (SCFM) ^{1,2}									
Models	Speed		Ext. Static Pressure (in. H ₂ O)								
		0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8		
	High	1172	1147	1116	1083	1035	984	933	870		
	Medium High	952	919	896	865	839	809	780	765		
TM9E040A10MP12	Medium	882	861	824	802	771	746	709	685		
	Medium Low	754	716	688	650	610	588	551	523		
	Low	688	648	619	584	541	518	481	446		
	High	1239	1209	1175	1143	1124	1095	1066	1019		
	Medium High	1142	1102	1080	1050	1019	989	960	924		
TM9E060A10MP12	Medium	971	935	909	869	839	805	761	731		
	Medium Low	915	891	848	818	776	744	708	691		
	Low	773	739	687	655	604	572	527	496		
	High	1342	1316	1290	1268	1243	1219	1172	1116		
	Medium High	1297	1267	1247	1217	1189	1159	1129	1087		
TM9E060B12MP12	Medium	1165	1139	1108	1080	1051		983	948		
	Medium Low	1027	995	965	936	894	862	825	778		
	Low	822	775	740	687	649	605	566	512		
	High	1418	1390	1364	1333	1304	1281	1246	1205		

Duct System Summary

Plan XX

Your Favorite Building Corporation

Job: xxyzx Date: August 28, 2020 By: Your Name Plan: xx

Company Contact Information

Project Information

or. Project Name and Location...Paso Robles example project

External static pressure Pressure losses Available static pressure Supply / return available pressure Lowest friction rate Actual air flow Total effective length (TEL) Heating 0.50 in H2O 0.30 in H2O 0.20 in H2O 0.143 / 0.057 in H2O 0.070 in/100ft 1068 cfm Cooling 0.50 in H2O 0.30 in H2O 0.20 in H2O 0.143 / 0.057 in H2O 0.070 in/100ft 1167 cfm

287 ft

Supply Branch Detail Table

Name		Design (Btuh)	Htg (cfm)	Clg (cfm)	Design FR	Diam (in)	H x W (in)	Duct Matl	Actual Ln (ft)	Ftg.Eqv Ln (ft)	Trunk
Bath-A	h	1027	35	31	0.079	5.0	0x0	VIFx	37.0	145.0	st5
Bed 2	С	2123	83	109	0.070	7.0	0x0	VIFx	45.7	160.0	st5
Entry-A	h	3163	109	47	0.090	7.0	0x0	VIFx	20.0	140.0	st7
Hall	С	2415	105	123	0.087	7.0	0x0	VIFx	29.6	135.0	st4
Kitchen/Dining	С	3534	122	181	0.108	10.0	0x0	VIFx	17.3	115.0	st3
Kitchen/Dining-A	С	3534	122	181	0.106	10.0	0x0	VIFx	10.2	125.0	st6
LauA	С	1459	73	75	0.070	5.0	0x0	VIFx	43.4	160.0	st5
Living	С	2584	112	132	0.085	7.0	0x0	VIFx	27.6	140.0	st7
M. BaA	h	2758	95	38	0.107	6.0	0x0	VIFx	18.5	115.0	st1
M. Bed	h	4455	153	153	0.109	8.0	0x0	VIFx	16.9	115.0	st1
Opt. Bed 3	С	1928	60	99	0.097	6.0	0x0	VIFx	32.5	115.0	st2

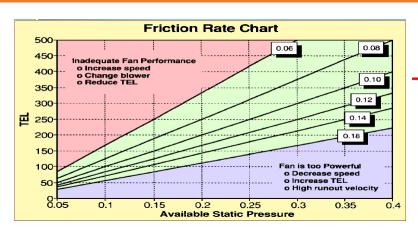
Supply Trunk Detail Table

Name	Trunk Type	Htg (cfm)	Clg (cfm)	Design FR	Veloc (fpm)	Diam (in)	H x W (in)	Duct Material	Trunk
st2 st4 st5 st3	Peak AVF Peak AVF Peak AVF Peak AVF	357 297 192	436 337 214 540	0.070 0.070 0.070	555 430 392 688	12.0 12.0 10.0	0 x 0 0 x 0 0 x 0 0 x 0	VinlFlx VinlFlx VinlFlx VinlFlx	st2 st4
st6 st7	Peak AVF Peak AVF Peak AVF	464 342 220 248	359 179 191	0.085 0.085 0.085 0.107	458 404 454	12.0 12.0 10.0 10.0	0 x 0 0 x 0 0 x 0	VinIFIX VinIFIX VinIFIX	st3 st6

Return Branch Detail Table

Name	Grille Size (in)	Htg (cfm)	Clg (cfm)	TEL (ft)	Design FR	Veloc (fpm)	Diam (in)	H x W (in)	Stud/Joist Opening (in)	Duct Matl	Trunk
rb1	0x 0	1068	1167	81.6	0.070	535	20.0	0x 0		VIFx	

Static Pressure and Friction Rate


Does the External Static Pressure (ESP) match the manufacture blower performance data? Range upper limit around 1.0 IWC

The equipment external static pressure (ESP) may include the coil pressure loss –read footnotes

Sometimes the equipment includes an assumed 0.10 pressure drop for air filter –read footnotes

Typical value for diffusers, grilles and balancing dampers pressure loss is 0.03 IWC

Filter loss could vary greatly...

TEL = Total Effective Length

Static Pressure and Friction Rate System Name

Example File

Project Information

Project Name

	Available Static Flessure	,
External static pressure	Heating (in H2O) 0.20	Cooling (in H2O) 0.20
Pressure losses		
Coil	0	0
Heat exchanger	0	0
Supply diffusers	0.03	0.03
Return grilles	0.03	0.03
Filter	0.05	0.05
Humidifier	0	0
Balancing damper	0	0
Other device	0	0
Available static pressure	0.09	0.09

	_	
	Supply	Return
Manager of the other of the same	(ft)	(ft)
Measured length of run-out	13	4
Measured length of trunk	2	0
Equivalent length of fittings	60	30
Total length	75	34
Total effective length		109

	THEUDIT	itato		
	Heating (in/100ft)		Cooling (in/100ft)	
Supply Ducts	0.083	OK	0.083	OK
Return Ducts	0.083	OK	0.083	OK

Fitting Ed	uivalent Le	Th Details
, 1B=10: TotalEL=60		

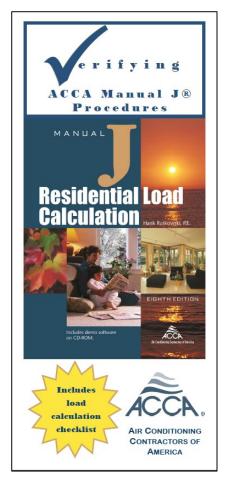
4X=35, 11S=15, 5E1=10. 6M=20: TotalEL=30

Supply

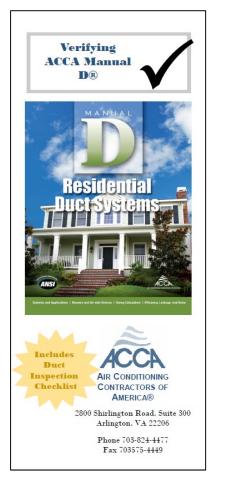
2021-Apr-22 11:29:52

Best Practices

Best Practices

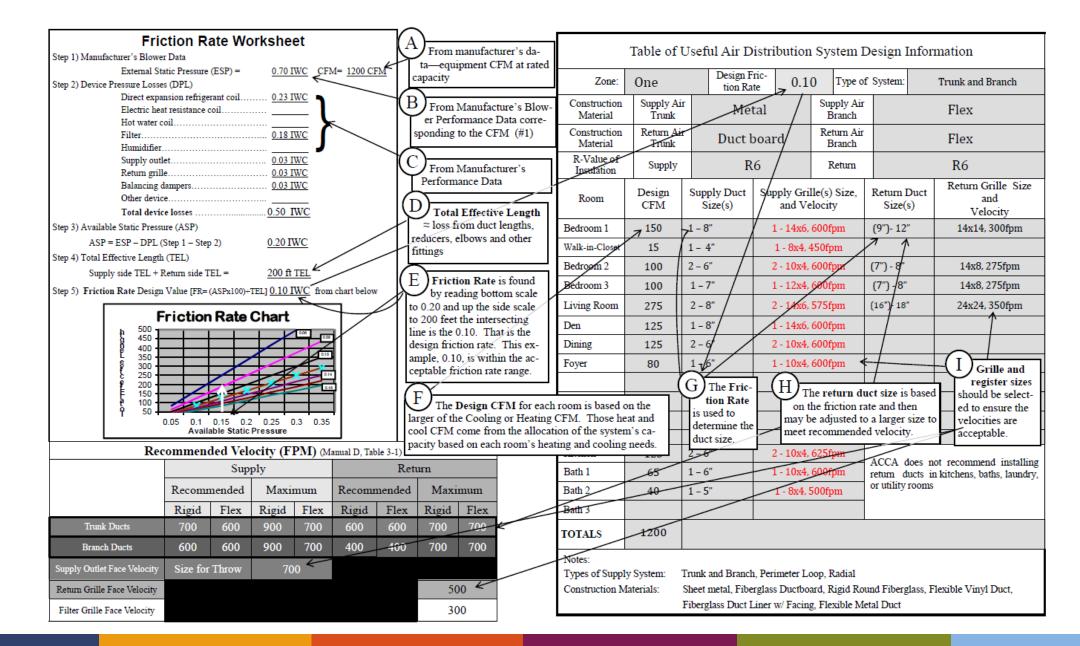

- ✓ Use the Residential Plans Examiner Review Form
- ✓ Compare ACCA Documents to CF1R, CF2R, CF3R's
- ✓ 'Experiment' with software such as Wrightsoft Right-J and Right-D software
- ✓ Create an ACCA Checklist of your desired forms
 - Project Summary
 - J1 Form and J Worksheet
 - Manual S Summary
 - Duct Layout / Distribution
 - Duct Design Summary
 - Static Pressure and Friction Loss Worksheet
 - OEM –Manufactures Performance Data




Resources

Resources

ACCA.org –on line store and public resources



ACCA Manual D Brochure, page 2

ACCA Manual S Brochure, page 2

	Equipment Selection Checklist								
#	Key Item	Verify	Verification Questions						
1	Design Conditions	The design condi- tions fall within specifications.	Do the design conditions fall within the minimum standards for this region as found in Manual J8 Table 1A or 1B?						
		The information from the Manual J load calculation was transferred accurate- ly.	Was the Total Heat Gain / Loss information used to evaluate equipment candidates?						
2	OEM's Performance Data	The equipment man- ufacturer's perfor- mance parameters match the design parameters used to calculate the heat load.	Does the manufacturer's performance parameters match the design parameters used to calculate the home's heat load (i.e., outdoor drybulb, indoor dry-bulb, and indoor wet-bulb)?						
			If the performance data parameters are more than 5% greater or less than the design parameters then did the contractor interpolate the equipment manufacturer's performance parameters to match the design parameters used to calculate the heat load?						
3	Equipment Performance	Estimated Cooling – CFM based on Tem- perature Difference	Was the Sensible Heat Ratio calculated? (Sensible Load / Total C Load)?						
			Was the SHR used to find the proper air flow?						
		Equipment selected satisfies Total Btus (for cooling the Sensible and Latent load)	Is the total heating capacity of the selected equipment ≤140% of the designed total heating load? (If not reduce equipment size)						
			Is the total cooling capacity of the selected equipment ≤115% of the designed total cooling load? (If not reduce equipment size)						
			Does the "Sensible" and/or "Latent" canacities of the selected equipment meet the load's requirements?						
			If a heat pump in a very cold climate (heating is primary concern) does the total cooling capacity of the selected equipment exceed 125% of the designed total cooling load?						
4	Auxiliary Heat	Heat Pump Balance Point	Does the electric auxiliary heat provide the necessary BTUs to makeup difference in capacity on the heat pump's balance point to the design load conditions?						

Equipment Selection using an ExampleChecklist								
	Design		Application Data: Equipment Capacity					
Winte	er Design Co	onditions	A furnace was selected for comparing "heating only"					
Outdoor °F: 27°F		From Manual J8 Table 1A or 1B	design and performance. Other types of equipment may be used.					
Indoor °F:	70°F	Manual J8 §3-6 defaults to 70°F	Furnace Model Num- ber:	FU600300	Fictitious furnace			
Total Calculated Heat Loss	50,981Btu/h	Determined by Manual J8 load calculation	Output BTUH:	52,000Btu/h	Furnace Btu/h Out- put: (≤ 140% of cal- culated loss)			
Summ	er Design C	onditions	A heat pump was selected for comparing cooling and					
Outdoor°F:	85°F	From Manual J8 Table 1A or 1B	heating design and performance. Other ty					
Indoor °F: 75°F		Manual J8 §3-6 defaults to 75°F	equipment may be used.					
Entering Wet Bulb (EWB):	63°F	Manual J8 §3-6 defaults to 63°F EWB (≈ 75°F / 50% RH)	Outdoor Unit Model Number:	HP-030	Fictitious heat pump			
Total Heat Gain	27,543Btu/h	Determined by	Total Cooling Capacity (≤ 115%)	28,400Btu/h	These capacities are from manufacturer's performance data at			
Sensible Heat Gain	23,321Btu/h	Manual J8 load calculation	Sensible Cooling Capacity (≈ Sensible Gain)	21,600Btu/h	the DESIGN CONDI- TIONS: 85°F ODT,			
Latent Heat Gain	4,222Btu/h		Latent Cooling Capacity (≈ Latent Gain)	6,800Btu/h	1,000CFM, and 63°F EWB			
Sensible Heat Ratio (SHR)	85% 🔘	See formula below	Indoor Unit Model Number:	AH-030	Fictitious air handler			
Design Air Flow	1,116 CFM	The "TARGET" airflow, we look for equipment that operates in this range (*/- 10%), on medium fan speed	Indoor Blower CFM (CFM in manufactur- er's performance data at rated capacity- medium fan speed):	1,000	The actual equipment rated airflow, (medium fan speed optimal) should fall within target CFM,(*/ - 15%)			
	at Ratio	5 23,321Btu/h 27,543Btu/h © 85% ≈ 19° Design Temp Sensible Heat Gain	Btuh Difference be- tween Heat Pump Bal- ance Point and Total Heat Loss	(B) 30,281 Btu/h	This heat pump can only produce 20,700Btu/h at design conditions. More capacity is required. (Air Conditioners do not have a balance point.)			
Below 0.80 0.80 – 0.85 * Above 0.85	21°F	Design Temp x 1.1 ,116 CFM= 23,321 Btu/h 19 x 1.1	Auxiliary Heat (Circle): Electric Gas Oil	10 KW (H)	In this example the auxiliary heat is electric, the formula for electric heat is KW= Btu/h ÷ 3.413			
From Manual J8 Tables From Manual J8			Load Calculation	From Equip. Po	erformance Data			

ACCA Manual J Brochure, page 2

	#	KEY ITEM	Снеск	QUESTIONS TO ASK	CIRCLE ANSWER*		
tal J8®.	1	DESIGN TEMPERATURES		Is the indoor design temperature for Heating: per Local Code OR 70°F (21°C) at 30% RH?	YES	NO	
			√ Indoor Design Temperatures	Is the indoor design temperature for <i>Cooling</i> : per Local Code OR 75°F (24°C) at 50% RH? [or 55% for humid climate, 45% for dry climate?]	YES	NO	*****
			✓ Outdoor Design Temperatures	Is the outdoor design temperature per Table 1 of MJ8 or Local Code?	YES	NO	
	2	WINDOWS & GLASS DOORS	✓ U-values and SHGC values	Are the SHGC and U-values reasonable for the window types and frame constructions? (see Table 2 of MJ8)	YES	NO	
			✓ Shading Adjustments	Have window shading (curtains, drapes, insect screens, tinting, etc.) adjustments been made?	YES	NO	
			✓ Overhang Adjustments	Have roof overhang adjustments been made?	YES	NO	
Manual			✓ Total Area	Is the total area for the windows & glass doors roughly equal to the area shown on the drawing plans?	YES	NO	
Ma			✓ Exposure Directions	Do the exposure directions [North (N), North-East (NE), etc.] appear correct?	YES	NO	
CA		SKYLIGHTS	✓ U-values and SHGC values	Are the SHGC and U-values appropriate for the skylight types and frame constructions? (see Table 2 of MJ8)	YES	NO	N/A
rm J1 of ACCA	,		✓ Shading Adjustments	Have adjustments been made for drapes, tinting and reflective coatings?	YES	NO	N/A
	3		✓ Total Area	Is the total area for the skylights roughly equal to the area shown on the drawing plans?	YES	NO	N/A
			✓ Exposure Directions	Do the exposure directions [North (N), North-East (NE), etc.] appear correct?	YES	NO	N/A
	4	DOORS WOOD, METAL	√ None				
Fo	5	WALLS	√ Insulation	Are correct wall insulation R-values taken into account when the wall loads are calculated?	YES	NO	
this checklist follows Form J1	3	ABOVE GRADE, BELOW GRADE	√ Total Area	Is the total area for the walls equal to the area shown on the drawing plans?	YES	NO	
		CEILINGS	✓ Insulation	Is correct ceiling insulation R-value taken into account when the ceiling load is calculated?	YES	NO	N/A
			✓ Radiant Barrier	If applicable, does the load calculation take credit for a radiant barrier?	YES	NO	N/A
klis	6		✓ Roof color and material	Is correct roof color and material taken into account when the ceiling load is calculated?	YES	NO	
hec			✓ Total Area	Is the total area for the ceilings equal to the area shown on the drawing plans?	YES	NO	
ာန	7	FLOORS	✓ Insulation	Is the floor insulation and type of construction representative of what is built/planned?	YES	NO	
thi		INFILTRATION	✓ Envelope Tightness	Is the listed envelope tightness (tight, semi-tight, average, semi-loose, loose) appropriate?	YES	NO	
	8		✓ Above grade volume	Is the total above grade volume equal to what is shown on the drawing plans?	YES	NO	
der		INTERNAL GAINS	✓ Appliances	Are the appliance gains 1200 Btuh, 2400 Btuh or a value recommended by MJ8?	YES	NO	
The order of	9		✓ Occupants	Is Maximum Number of Occupants = Number of Bedrooms + 1?	YES	NO	
				- Is Btuh (sensible) = 230 x Number of Occupants?	YES	NO	
				- Is Btuh (latent) = 200 x Number of Occupants?			
	10	DUCTS	✓ Duct Location	If located in an unconditioned space, are the ducts insulated (appropriate R-value)?	YES	NO	N/A
			✓ Duct Tightness	Is the duct tightness category 'average sealed' or higher (i.e. notably sealed, extremely sealed)?	YES	NO	
		VENTILATION	✓ Intermittent Fans	Are intermittent bathroom and kitchen fans excluded from the infiltration calculations?	YES	NO	N/A
	11		✓ Continuous Exhaust Fans	Are dedicated exhaust fans (continuous) <u>included</u> in the calculations?	YES	NO	N/A
			✓ Heat Recovery Equipment	Are the heat recovery equipment and/or a ventilating dehumidifier included in the calculations (if applicable)?	YES	NO	N/A

Upcoming Courses Questions

More Information

- 1.5 AIA LU's Available
- 1.5 ICC LU's Available
 - Contact spburns@countyofsb.org for any questions regarding LUs
- Coming to Your Inbox Soon!
 - Slides, Recording, & Survey Please Take It and Help Us Out!
- Upcoming Courses
 - 4/5 The Value of Becoming a Certified Energy Analyst
 - 4/21 All About ADU's for Households
 - 5/10 All Electric Construction Part 1: Heat Pumps For Heating and Cooling

Thank you!

For more info: 3c-ren.org

For questions: info@3c-ren.org

TRI-COUNTY REGIONAL ENERGY NETWORK
SAN LUIS OBISPO • SANTA BARBARA • VENTURA