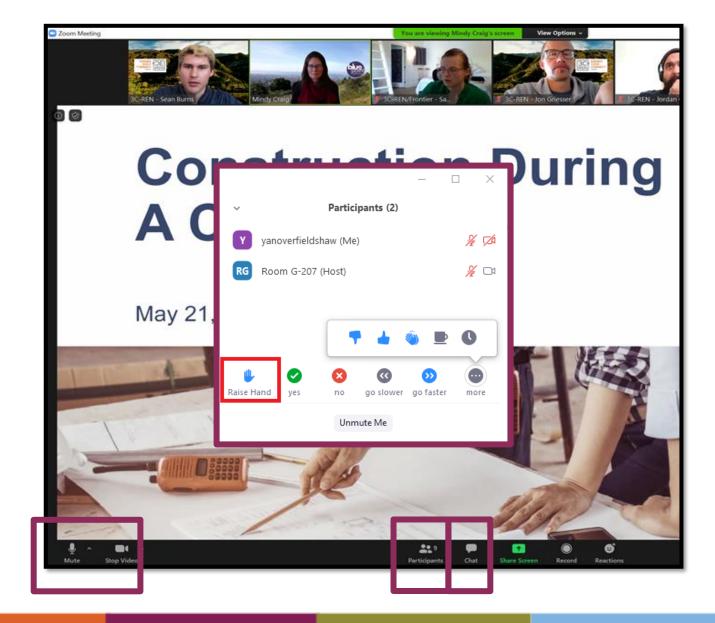


We will be starting soon!

Thanks for joining us

Intro to Residential HVAC Design (ACCA) Part 1



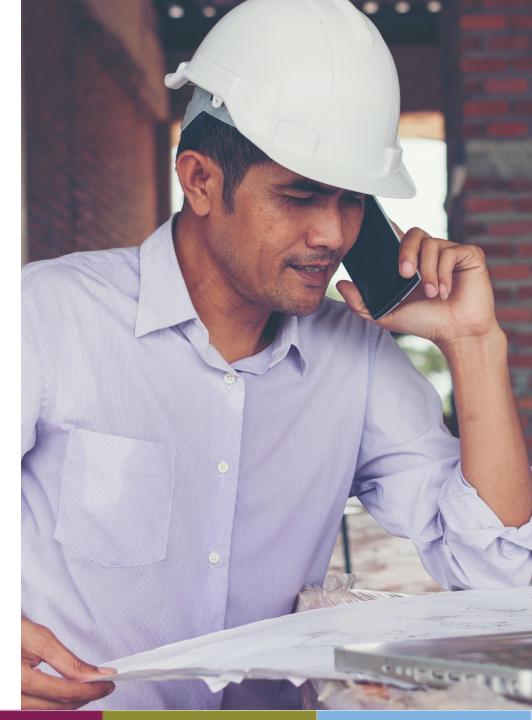
Russ King – Coded Energy April 25, 2023

Zoom Orientation

- Please be sure your full name is displayed
- Please mute upon joining
- Use "Chat" box to share questions or comments
- Under "Participant" select "Raise Hand" to share a question or comment verbally
- The session may be recorded and posted to 3C-REN's on-demand page.
 Feel free to ask questions via the chat and keep video off if you want to remain anonymous in the recording.

3C-REN: Tri-County Regional Energy Network

- Three counties working together to improve energy efficiency in the region
- Services for
 - Building Professionals: industry events, training, and energy code compliance support
 - Households: free and discounted home upgrades
- Funded by ratepayer dollars that 3C-REN returns to the region



- Serves all building professionals
- Three services
 - Energy Code Coach
 - Training and Support
 - Regional Forums
- Makes the Energy Code easy to follow

Energy Code Coach: 3c-ren.org/codes 805.220.9991 Event Registration: **3c-ren.org/events**

- Serves current and prospective building professionals
- Expert instruction:
 - Technical skills
 - Soft skills
- Helps workers to thrive in an evolving industry

Event Registration: **3c-ren.org/events**

Multifamily (5+ units)

- No cost technical assistance
- Rebates up to \$750/apartment plus additional rebates for specialty measures like heat pumps

Single Family (up to 4 units)

- Sign up to participate!
- Get paid for the metered energy savings of your customers

Enrollment: 3C-REN.org/contractor-participation

PART I OF 2 ACCA MANUAL J LOAD CALCULATIONS ACCA MANUAL S EQUIPMENT SELECTION DEVELOPED FOR: SONOMA COUNTY ENERGY AND SUSTAINABILITY

PRESENT BY: CODED ENERGY, INC. RUSSELL KING, ME

- Part I ACCA Manual J Loads and Manual S Equipment Selection (Today)
- Part 2 ACCA Manual D Duct Design (This Thursday)

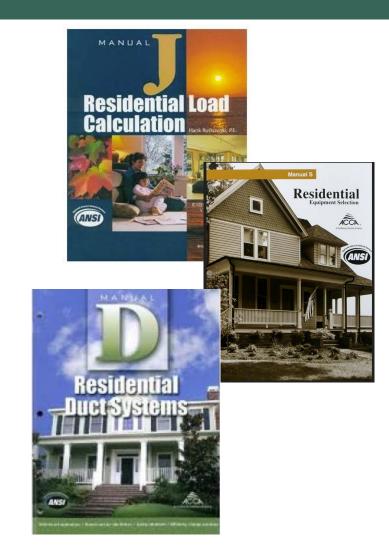
Agenda for Today

- I. Introduction
- 2. Overview of the HVAC Design Process:
- 3. Manual J Load Calculations
- 4. Manual S Equipment Selection

Agenda for Part 2

- I. Introduction (Some Review)
- 2. Overview of the HVAC Design Process (Review)
- 3. Manual D Duct System Design

- Instructor Russell King, M.E.
- Licensed Mechanical Engineer (3 states)
- CEO of Coded Energy, Inc. (Developers of Kwik Model 3D software)
- 30+ years experience with residential HVAC design and energy efficiency
- russ@coded-energy.com
- HVAC Blog: <u>www.russellking.me</u>
- Software Website: <u>www.kwikmodel.com</u>
- YouTube: Kwik Model (HVAC design and software demos)


About ACCA Manuals J/S/D

- ACCA is Air Conditioning Contractors of America, the largest HVAC trade association in the United States.
- They write and publish ANSI approved manuals on residential and nonresidential HVAC design
- Most widely recognized as the industry standard for HVAC design (though not the only recognized standard).

About ACCA Manuals J/S/D

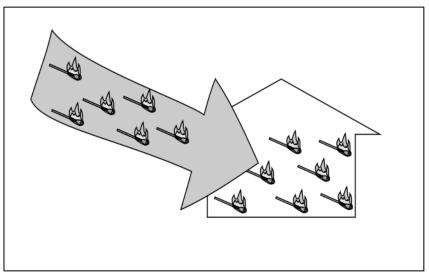
- The California Energy Code and Mechanical Code <u>require</u> ACCA Manual J, S and D (or equal) for all *new* residential HVAC systems, whether in a new house or an existing house.
- More and more building departments are starting to enforce this requirement.
- HVAC contractors should be doing it anyway!

- Basic Design Manuals
 - Manual J Residential Load Calculations
 - Manual S Equipment Selection
 - Manual D Duct Design
- Other Related Manuals
 - Manual RS Residential System Design (overview)
 - Manual T Terminal Selection (registers)
 - Manual H Heat Pumps
 - Manual LLH Low Load Homes
- Other Standards and Checklists. (QI, QM, etc.)
- www.acca.org

Definitions

British Thermal Unit (BTU)

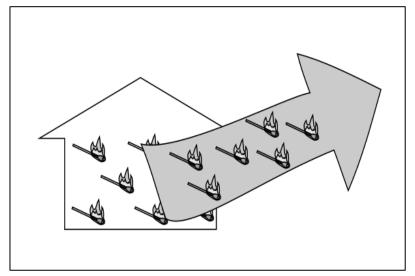
This is a unit of heat energy that is approximately equal to the heat stored in a wooden kitchen match.


Heat moves at different *rates*. We express this in BTUs per hour (Btuh)

Definitions

Cooling <u>Load</u>

- In the summer, the BTUs are more concentrated outside the house than inside, so heat will naturally come into the house.
- The cooling load is the number of BTUs per hour that the air conditioner must <u>remove</u> at design conditions.

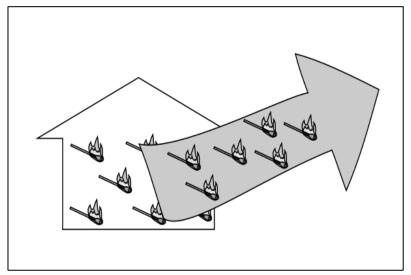

Images from HVAC 1.0 – Introduction to Residential HVAC Systems

Definitions

Cooling

Cooling is the process of removing heat from a house

- Consider an air conditioner that is tested to have a cooling capacity of 24,000 Btuh.
- This means that it can remove 24,000 kitchen matches worth of heat from the house in one hour.

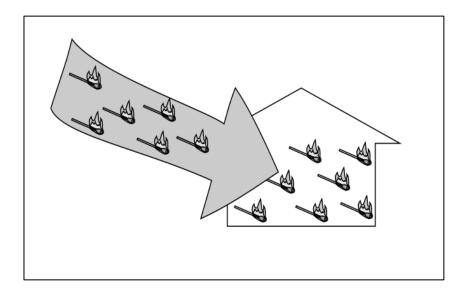


Images from HVAC 1.0 – Introduction to Residential HVAC Systems

Definitions

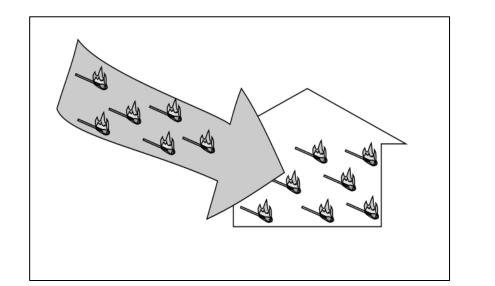
Heating Load

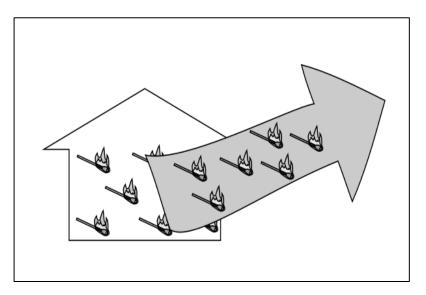
- In the winter the BTUs are more concentrated inside the house than outside, so heat will naturally leave the house.
- Heating load is the number of BTUs that the heater (heat pump or furnace) must add each hour at design conditions.


Images from HVAC 1.0 – Introduction to Residential HVAC Systems

Definitions

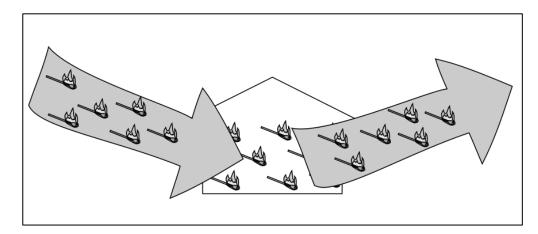
Heating


Heating is the process of adding BTUs to a house.


- Consider a heater that is tested to have a heating capacity of 30,000 btuh.
- This means that it can add 30,000 kitchen matches worth of heat to the house in one hour.

Images from HVAC 1.0 – Introduction to Residential HVAC Systems

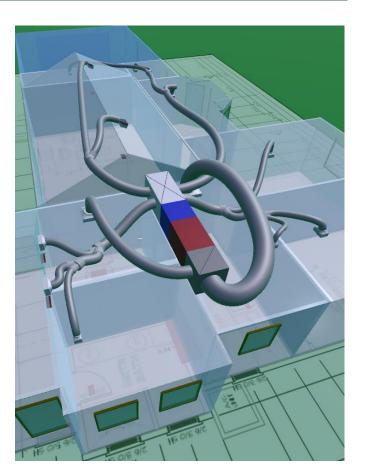
To maintain a **constant temperature** in a house the rate of heat coming in must **equal** the rate of heat going out.


Images from HVAC 1.0 – Introduction to Residential HVAC Systems

Definitions

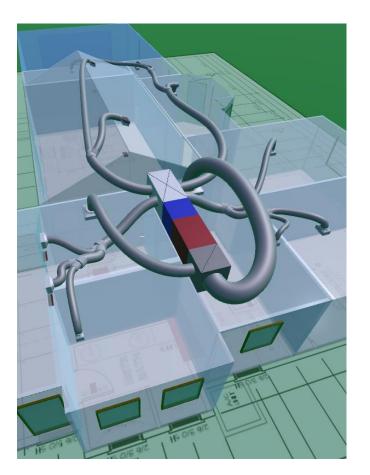
The **capacity** of the heating or cooling equipment is the *output* of the equipment in BTUs per hour. Think of it as the **supply**.

The **load** of the house is what the house *needs* in BTUs per hour to maintain a constant temperature at design conditions. Think of it as the **demand**.


Good equipment sizing is the ability to match the equipment's **supply** to the house's **demand**.

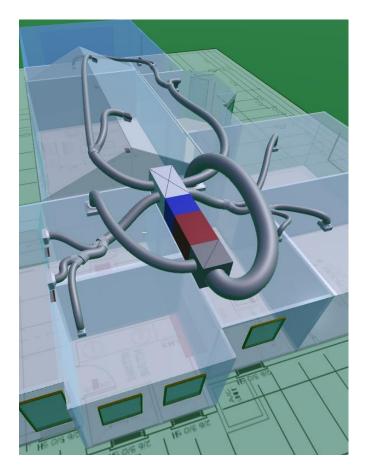
Images from HVAC 1.0 – Introduction to Residential HVAC Systems

Definitions


Undersizing is defined as when the *capacity* of the equipment is less than the *load* of the house at design conditions.

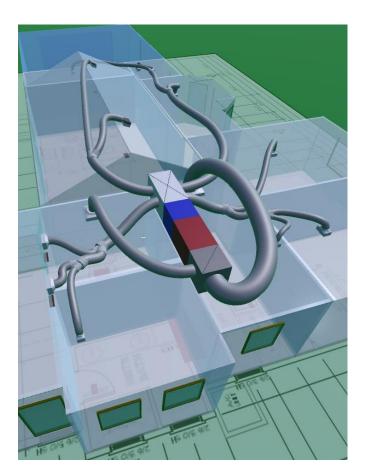
Screen snip from Kwik Model with EnergyGauge Loads

Definitions


Oversizing is defined as when the *capacity* of the equipment is substantially higher than the *load* of the house at design conditions.

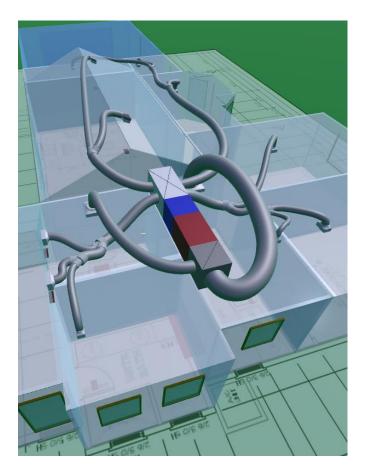
Screen snip from Kwik Model with EnergyGauge Loads

Definitions


- **Design conditions** are the specified indoor and outdoor temperatures at which the loads are calculated.
- These are not the very worst temperatures expected each summer or winter.
- It would not be wise to design to such temperatures because these rarely occur.

Screen snip from Kwik Model with EnergyGauge Loads

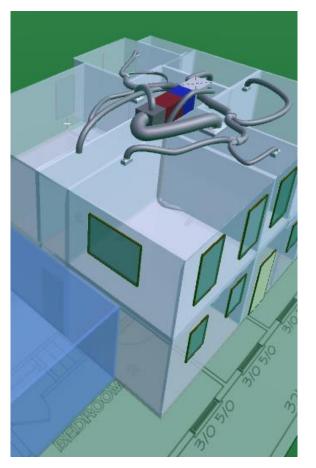
Definitions - Design conditions


- The system needs to also work at milder conditions.
- If we design to really bad conditions, the equipment would be oversized for most of the season.

Screen snip from Kwik Model with EnergyGauge Loads

Definitions - Design conditions

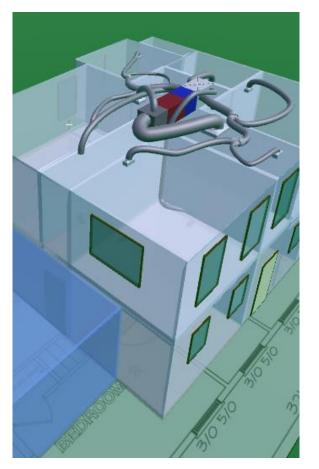
- The difference between the indoor design temperature and the outdoor design temperature is referred to as the "Delta T".
- There is a delta T for the summer and a delta T for the winter.


Screen snip from Kwik Model with EnergyGauge Loads

The Importance of Good Design: Equipment Sizing

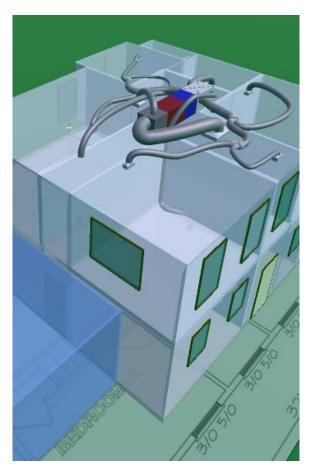
Load Calculations are critical to properly sized heating and cooling equipment.

For <u>Air Conditioners</u>:

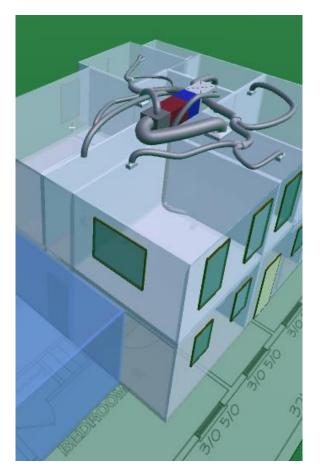

- Undersizing may cause house not to cool well on very hot days.
- Oversizing can cause excess stratification, uneven temperature distribution. Plus, higher electric bills and shortened equipment life.

Screen snip from Kwik Model with EnergyGauge Loads

The Importance of Good Design: Equipment Sizing

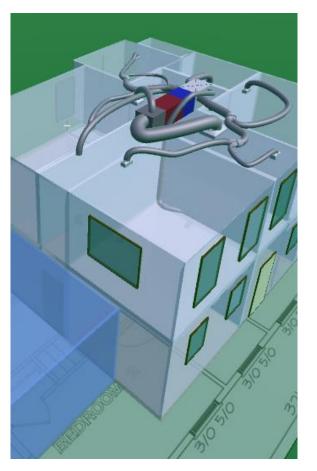

- For Heaters (heat pumps or furnaces):
- Undersizing may cause house not to heat well on very cold days.
- Oversizing can cause excess stratification, uneven temperature distribution. Plus, higher utility bills and shortened equipment life.

Screen snip from Kwik Model with EnergyGauge Loads


The Importance of Good Design: Equipment Sizing

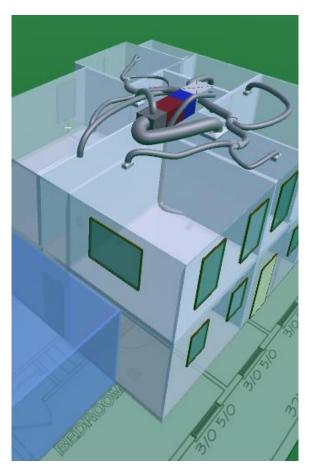
- Undersized Equipment will work fine on milder days (which is most of the time)
- Oversized Equipment will perform worse on milder days (which is most of the time)
- Oversized equipment will cause more comfort complaints than undersized equipment.

The Importance of Good Design: Equipment Sizing

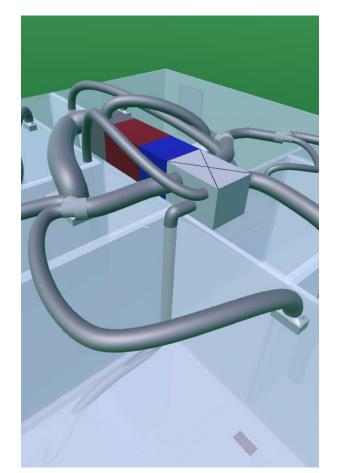

- The negative impacts of Oversized Equipment can be reduced by using dual speed or variable capacity units.
- The negative impacts of both Oversized and Undersized Equipment can be reduced with good duct design and good system airflow.

Screen snip from Kwik Model with EnergyGauge Loads

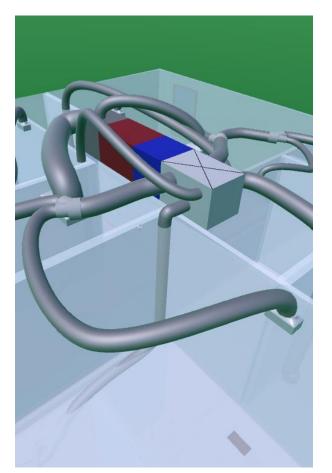
The Importance of Good Design: Equipment Sizing


- The negative impacts of Undersized Equipment can be reduced by improving the house (reducing the load) and increasing the capacity of the existing equipment (improve airflow, proper charge, etc).
- This should <u>always</u> be considered first before increasing the <u>size</u> of the equipment

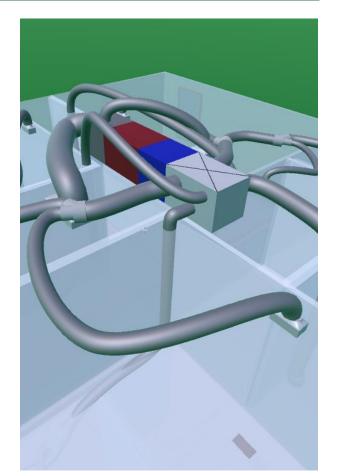
Screen snip from Kwik Model with EnergyGauge Loads


The Importance of Good Design: Equipment Sizing

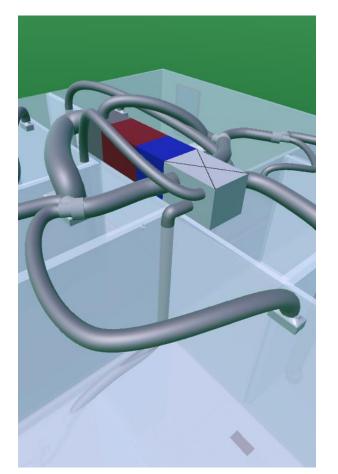
- Historically, the most common method of equipment sizing was rules of thumb and trial and error.
- This almost always leads to oversized equipment (and undersized ducts).
- Having a basis for your design (something to compare to) and field testing/monitoring is critical to becoming a good designer.


The Importance of Good Design: Duct Sizing

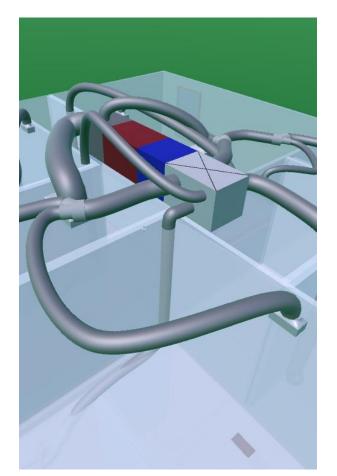
- Since the temperature of the entire house (or zone) is determined by one location (at the thermostat) it is important for even temperature distribution that conditioned air be distributed evenly throughout the home.
- This is done by sizing the ducts to deliver the proper airflow to each room (register).


The Importance of Good Design: <u>Duct sizing</u>

- Target room airflows need to be determined from room-by-room loads – you need to know what the load of a room is relative to other rooms.
- General undersizing of all ducts, especially return ducts, will reduce total system fan flow, which will reduce <u>capacity and efficiency</u> of system.


The Importance of Good Design: <u>Duct sizing</u>

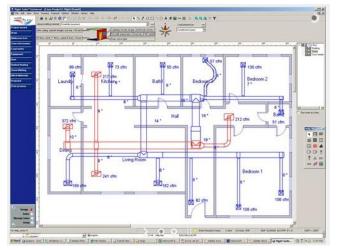
- Undersizing one or two ducts relative to the other ducts in the house will cause poor air balance.
- This will result in uneven temperature distribution in the house (some rooms warmer or cooler than others)
- These problems are made more noticeable by low overall airflow.
- Good overall airflow tends to hide these issues.


Remember:

- Equipment cannot be properly sized unless you know the load of the house. (the Demand – what is needed)
- Equipment cannot be properly sized unless you can accurately determine the capacity at design conditions. (the Supply – what is being provided)

Remember:

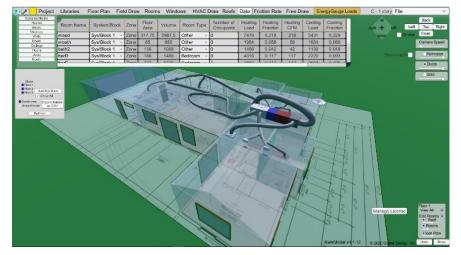
- Ducts cannot be properly sized unless you know how much air to distribute where to distribute it.
- To know how to distribute the air, you need room by room load calculations.



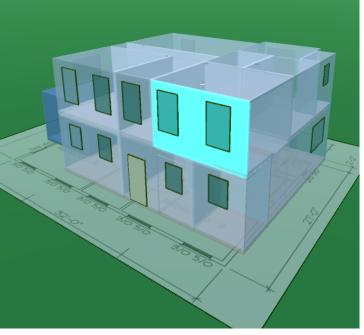
The Process

- The basic steps in designing a typical ducted central system for a home are:
 - I. Collect information about the house
 - 2. Perform room-by-room load calculations (Manual J)
 - 3. Select equipment to meet the total loads (Manual S)
 - 4. **Design** the distribution system (Manual D)

There are several ACCA approved **software programs** available to help you through this process. Examples:


Right-Suite® by Wrightsoft

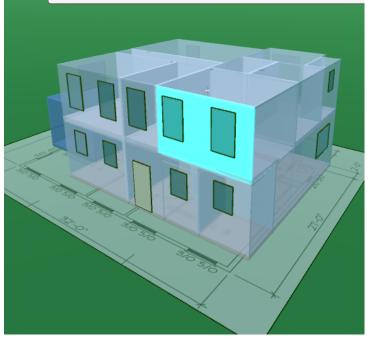
RHVAC by Elite Software


Kwik Model® with EnergyGauge Loads

Step I. Collect Information About the House

- What you really need are *areas* for:
 - ceilings,
 - walls,
 - doors,
 - and floors,
 - Plus, window areas and orientations (N, S, E, W)
- These are the surfaces that will conduct heat into and out of the house.

WallNum	Room	Туре	Net Area
29	bed3(1)	2x4 R-13 ~	80.5
30	bed3(1)	2x4 R-13 ~	93.5
31	mba(2)	2x4 R-13 ~	76.5
32	toilet(1)	2x4 R-13 ~	25.5
22	toilet(1)	2v/ D-12 V	525

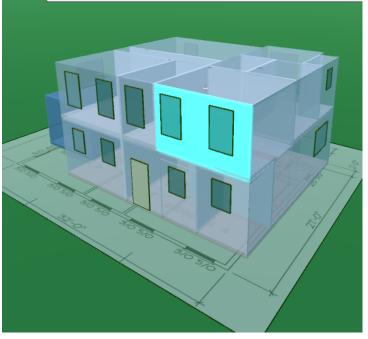


Screen snip from Kwik Model with EnergyGauge Loads

Step I. Collect Information About the House

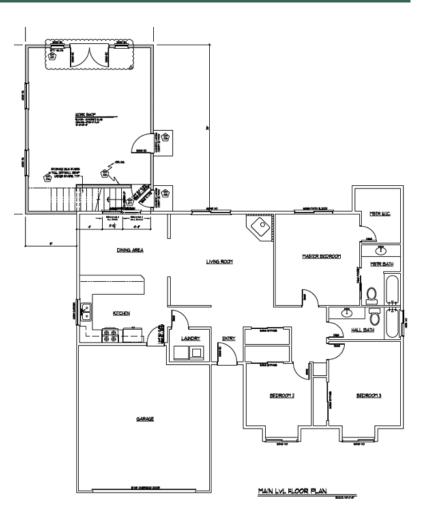
- You will need this on a room-by-room basis if you plan to also size the ducts.
- Keeping track of all these surfaces is challenging.
- This is where design software is most helpful.

WallNum	Room	Туре	Net Area
29	bed3(1)	2x4 R-13 ~	80.5
30	bed3(1)	2x4 R-13 ~	93.5
31	mba(2)	2x4 R-13 ~	76.5
32	toilet(1)	2x4 R-13 ~	25.5
33	toilet(1)	2v/I D_12 √	53 5



IVAC 1.0 INTRO TO RESIDENTIAL HVAC SYSTEMS

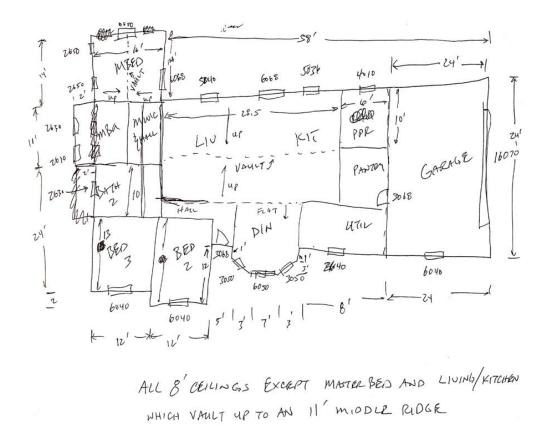
Step I. Collect Information About the House


- The goal is to accurately estimate the **conduction, convection and radiation** heat transfer between the inside and outside of the house.
- You need to do it for **winter** and **summer**.

WallNum	Room	Туре	Net Area
29	bed3(1)	2x4 R-13 ~	80.5
30	bed3(1)	2x4 R-13 ~	93.5
31	mba(2)	2x4 R-13 ~	76.5
32	toilet(1)	2x4 R-13 ~	25.5
22	toilet(1)	2v4 ₽-13 v	52 5

Step I. Collect Information About the House

If you are designing a system for a new house, most of the information you will need is on the **building plans and** energy compliance docs.



www.cubi.casa

Step I. Collect Information About the House

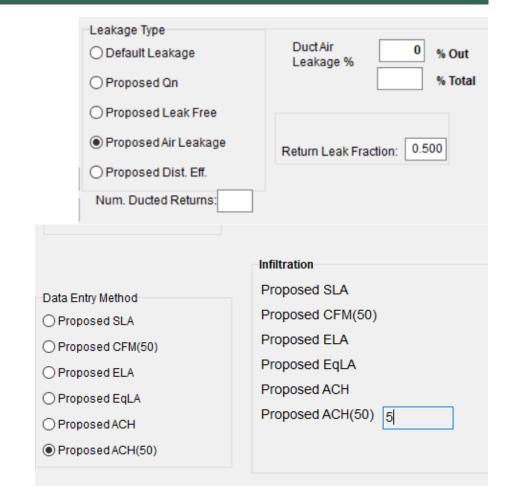
If you are designing a system for an <u>existing</u> house, you may have to create your own plans by **sketching** a floor plan based on field measurements

or use an app.

Step I. Collect Information About the House

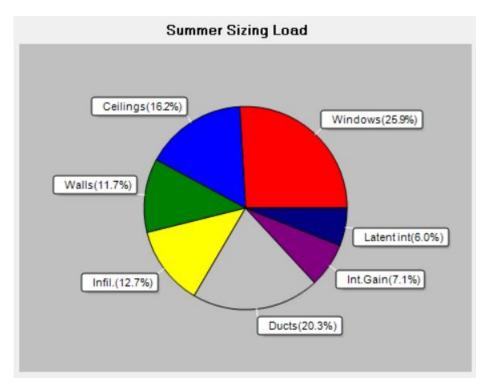
- Then you will need information about these surfaces, such as
 - what kind of surface,
 - how much insulation,
 - what kind of windows, etc.

Ceiling Style	
UnderAttic	~]
UnderAttic	~]
UnderAttic	~]
CathedralOrSingleAssembly	~]
	UnderAttic UnderAttic UnderAttic

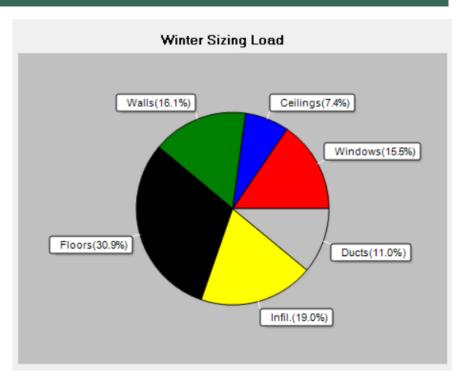

HVAC 1.0 INTRO TO RESIDENTIAL HVAC SYSTEMS

Step I. Collect Information About the House

For existing homes you will have to visit the house and determine these features


For new homes, this information will be in the energy compliance calculations.

- Step I. Collect Information About the House
- You will also need to make engineering estimates about things such as
 - duct leakage and
 - infiltration
- Whatever your assumptions are for these, they need to be verified in the field when possible.


Step I. Collect Information About the House

- In CA duct leakage is required to be improved as part of major work being done to an HVAC system.
- For substantially new systems (new equipment and 75% new ducts) the maximum allowed leakage is 5%.
- For altered systems the maximum allowed leakage is 10%.

Step I. Collect Information About the House

- Infiltration can have a dramatic effect on the load calcs.
- For existing houses, it is a good idea to measure it using a blower door prior to doing load calcs.
- If it is very bad (e.g., CFM50 > floor area of the house) it is *probably* cost effective to seal the house so that you can install smaller equipment and **save energy**.

Screen snip from Kwik Model with EnergyGauge Loads

Step 2. Perform Room-by-Room Load Calculations

Manual J – Coming up!

Step 3. Select Equipment to Meet Loads

Manual S – Coming up!

Step 4. Design the Distribution System

Manual D – Part 2 Class!

- There are two basic kinds of load calculations.
- One kind is a whole house load calculation that lumps the entire house (or zone) into one total value, which can be used to size the equipment. (aka "Block" loads)

Location for weather data: Sacramento (Met, CA - Defaults: Latitude (38.7) Altitude (23ft.) Temp Range (H)								
Humiditydata: Interior RH (50%) Outdoor wet bulb (70F) Humiditydifference(0gr.)								
Winter design temperature(CA Me	ed.) 26	F	Summer design temperature(MJ8	99%) 98	F			
Wintersetpoint	68	F*	Summer setpoint	75	F			
Winter temperature difference	42	F	Summer temperature difference	23	F			
Total heating load calculation	33450	Btuh	Total cooling load calculation	26131	Btuh			
Submitted heating capacity	% of calc	Btuh	Submitted cooling capacity	% of calc	Btuh			
Total (Electric Heat Pump)	107.6	36000	Sensible (SHR = 0.76)	90.0	22011			
Heat Pump + Auxiliary(0.0kW)	107.6	36000	Latent	415.4	6989			
			Total (Electric Heat Pump)	111.0	29000			

The other kind is a room-by-room load calculation, which breaks the house into rooms and calculates a heating and cooling load for each individual room.

Room Name	System/Block	Zone	Floor Area	Volume	Room Type	Number of Occupants	Heating Load	Heating Fraction	Heating CFM	Sens Cooling Load	Cooling Fraction	Cooling CFM	Duct Size CFM
mbed	Sys/Block 1 🛛 🗸	Zone	317.75	2987.5	Bedroom ~	0	8439	0.22	220	6047	0.217	261	261
mbath	Sys/Block 1 🛛 🗸	Zone	85	680	Other ~	0	2260	0.059	59	1763	0.063	76	76
bath2	Sys/Block 1 🛛 🗸	Zone	136	1088	Other ~	0	1594	0.042	42	1310	0.047	56	56
bed3	Sys/Block 1 🛛 🗸	Zone	186	1488	Bedroom ~	0	4596	0.12	120	2431	0.087	105	120
bed2	Sys/Block 1 🛛 🗸	Zone	222	1776	Bedroom ~	1	4370	0.114	114	2788	0.1	120	120
liv/kit	Sys/Block 1 🛛 🗸	Zone	493	4930	Kitchen 🗸	2	6751	0.176	176	6627	0.238	286	286
din	Sys/Block 1 🛛 🗸	Zone	184.25	1474	Other ~	0	4130	0.108	108	3474	0.125	150	150
pdr	Sys/Block 1 🛛 🗸	Zone	102	816	Other ~	0	3746	0.098	98	2273	0.082	98	98
util	Sys/Block 1 🛛 🗸	Zone	59.5	476	Other ~	0	2489	0.065	65	1113	0.04	48	65
Total			1785.5	15715.5		3	38375	1	1000	27825	1	1200	1232

• These help you **distribute** the heating and cooling correctly.

- There are load calculations for both heating (winter) and cooling (summer) loads.
 - Winter = Heat leaving the house
 - Summer = Heat coming into the house
- Let's look at heating loads calculations first.

Winter Delta Temp. (°F)	42		Summer Delta Temp. (°F)	23	
Winter Building Load (Bt	uh)		Summer Building Load (Bt	uh)	
Window Load:	5199		Window Load:	6895	5
Wall Load:	5399		Wall Load:	3126	6
Ceiling Load:	2479		Ceiling Load:	4308	3
Door Load:	0		Door Load:	0	
Floor Load:	10333		Floor Load:	0	
Infiltration Load:	6348		Infiltration Load:	2882	2
Building Subtotal	29757		Internal Gain:	1890)
Duct Loss:	3693		Duct Gain:	5347	7
Mech Ventilation Loss:	0		Sensible Subtotal		2444
TOTAL HEATING LOAD	33450		Mech Vent. Sens. Load:	0	
			Blower Sens. Load:	0	
			Total Sensible Load		2444
			Infiltration Latent Load:	0	
			Mech Vent. Latent Load:	0	
		Pie Charts	DuctLatent Load:	83	
			Internal/Other Latent Load:	1600)
			Total Latent Land		1683

Screen snip from Kwik Model with EnergyGauge Loads

TOTAL COOLING LOAD

A heating load calculation is a sum of all of the **BTU** losses (convection, conduction and radiation) that occur when it is a certain delta T.

Winter Delta Temp. (°F)	42		Summer Delta Temp. (°F)	23
Winter Building Load (B	tuh)		- Summer Building Load (B	tuh
Window Load:	5199		Window Load:	68
Wall Load:	5399		Wall Load:	31
Ceiling Load:	2479		Ceiling Load:	43
Door Load:	0		Door Load:	0
loor Load:	10333		Floor Load:	0
nfiltration Load:	6348		Infiltration Load:	28
Building Subtotal	29757		Internal Gain:	18
Duct Loss:	3693		Duct Gain:	53
Aech Ventilation Loss:	0		Sensible Subtotal	
TOTAL HEATING LOAD	33450		Mech Vent. Sens. Load:	0
OTAL HEATING LOAD			Blower Sens. Load:	0
			Total Sensible Load	
			Infiltration Latent Load:	0
			Mech Vent. Latent Load:	0
		Pie Charts	DuctLatent Load:	83
			Internal/Other Latent Load:	16
			Total Latent Load	
			TOTAL COOLING LOAD	

Screen snip from Kwik Model with EnergyGauge Loads

6895 3126 4308

2882 1890

5347

83 1600

24449

24449

1683

 The delta T is determined by two temperatures called the winter indoor and outdoor design temperatures.

Winter Delta Temp. (°F)	42		Summer Delta Temp. (°F)	23
Winter Building Load (B	tuh)		- Summer Building Load (B	tuh)
Window Load:	5199		Window Load:	689
Wall Load:	5399		Wall Load:	312
Ceiling Load:	2479		Ceiling Load:	430
Door Load:	0		Door Load:	0
Floor Load:	10333		Floor Load:	0
Infiltration Load:	6348		Infiltration Load:	288
Building Subtotal	29757		Internal Gain:	189
Duct Loss:	3693		Duct Gain:	534
Mech Ventilation Loss:	0		Sensible Subtotal	
TOTAL HEATING LOAD	33450		Mech Vent. Sens. Load:	0
TOTAL HEATING LOAD			Blower Sens. Load:	0
			Total Sensible Load	
			Infiltration Latent Load:	0
			Mech Vent. Latent Load:	0
		Pie Charts	DuctLatent Load:	83
			Internal/Other Latent Load:	160
			Total Latent Load	
			TOTAL COOLING LOAD	

Screen snip from Kwik Model with EnergyGauge Loads

24449

24449

 For heating, assume that these occur at night when there are no solar gains to offset heating load

Winter Delta Temp. (°F)	42		Summer Delta Temp. (°F)	23	
Winter Building Load (B	tuh)		- Summer Building Load (Bt	uh)	
Window Load:	5199		Window Load:	6895	5
Wall Load:	5399		Wall Load:	3126	6
Ceiling Load:	2479		Ceiling Load:	4308	3
Door Load:	0		Door Load:	0	
Floor Load:	10333		Floor Load:	0	
Infiltration Load:	6348		Infiltration Load:	2882	2
Building Subtotal	29757		Internal Gain:	1890)
Duct Loss:	3693		Duct Gain:	5347	
Mech Ventilation Loss:	0		Sensible Subtotal		24449
	33450		Mech Vent. Sens. Load:	0	
TOTAL HEATING LOAD	33430		Blower Sens. Load:	0	
			Total Sensible Load		24449
			Infiltration Latent Load:	0	
			Mech Vent. Latent Load:	0	
		Pie Charts	DuctLatent Load:	83	
			Internal/Other Latent Load:	1600)
			Total Latent Load		1683
			TOTAL COOLING LOAD		26131

- Cooling loads are similar except that they are more complicated because solar gains are **<u>not</u>** ignored.
- Solar gains are a big part of the cooling loads.

Winter Delta Temp. (°F)	42		Summer Delta Temp. (°F)	23
Winter Building Load (B	tuh)		Summer Building Load (Bt	uh)
Window Load:	5199		Window Load:	689
Wall Load:	5399		Wall Load:	312
Ceiling Load:	2479		Ceiling Load:	430
Door Load:	0		Door Load:	0
Floor Load:	10333		Floor Load:	0
Infiltration Load:	6348		Infiltration Load:	288
Building Subtotal	29757		Internal Gain:	189
Duct Loss:	3693		Duct Gain:	534
Mech Ventilation Loss:	0		Sensible Subtotal	
TOTAL HEATING LOAD	33450		Mech Vent. Sens. Load:	0
TOTAL HEATING LOAD			Blower Sens. Load:	0
			Total Sensible Load	
			Infiltration Latent Load:	0
			Mech Vent. Latent Load:	0
		Pie Charts	DuctLatent Load:	83
			Internal/Other Latent Load:	160
			Total Latent Load	

Screen snip from Kwik Model with EnergyGauge Loads

TOTAL COOLING LOAD

6895 3126 4308

2882 1890 5347

24449

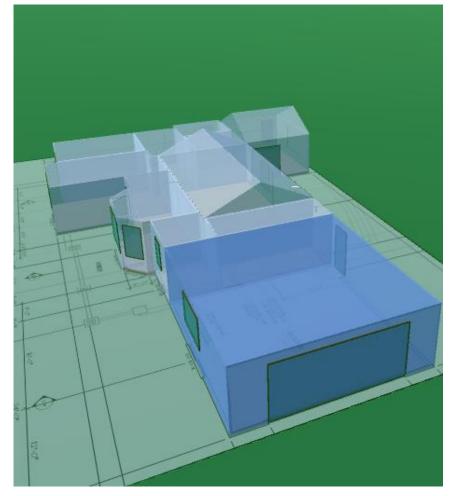
24449

1683

26131

What makes them so complicated is that solar gains are affected by orientation of windows and by shading from overhangs and interior shading devices such as drapes or blinds.

42		Summer Delta Temp. (°F)	23	
h)		- Summer Building Load (Bt	uh)	
5199		Window Load:	6895	j
5399		Wall Load:	3126)
2479		Ceiling Load:	4308	}
0		Door Load:	0	
10333		Floor Load:	0	
6348		Infiltration Load:	2882	2
29757		Internal Gain:	1890	
3693	Duct Gain:		5347	
0		Sensible Subtotal		24449
33450		Mech Vent. Sens. Load:	0	
		Blower Sens. Load:	0	
		Total Sensible Load		24449
		Infiltration Latent Load:	0	
		Mech Vent. Latent Load:	0	
	Pie Charts	DuctLatent Load:	83	
		Internal/Other Latent Load:	1600)
		Total Latent Load		1683
	h) 5199 5399 2479 0 10333 6348 29757 3693	h) 5199 5399 2479 0 10333 6348 29757 3693 0 33450	h) 5199 5399 2479 0 10333 6348 29757 3693 0 33450 Pie Charts Summer Building Load (Bt Window Load: Wall Load: Ceiling Load: Door Load: Infitration Load: Infitration Load: Infitration Load: Internal Gain: Sensible Subtotal Mech Vent. Sens. Load: Blower Sens. Load: Infitration Latent Load: Mech Vent. Latent Load: Mech Vent. Latent Load: Internal/Other Latent Load:	h) Summer Building Load (Btuh) 5199 Window Load: 6895 2479 Ceiling Load: 3126 0 10333 O O 10333 Door Load: O 6348 Infiltration Load: 2882 29757 O O 3693 O Sensible Subtotal 0 Mech Vent. Sens. Load: O Blower Sens. Load: O O Infiltration Latent Load: O O Pie Charts DuctLatent Load: O Internal/Other Latent Load: 1600

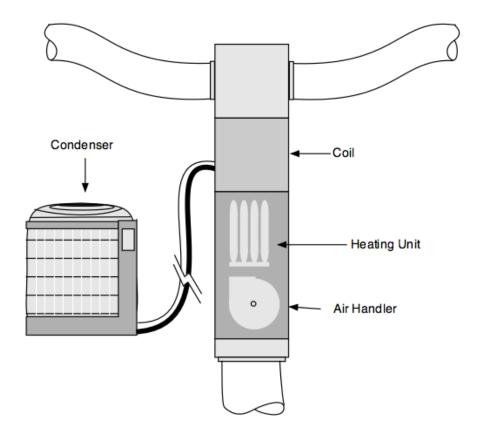

Screen snip from Kwik Model with EnergyGauge Loads

TOTAL COOLING LOAD

 Cooling loads and the subsequent sizing of equipment is much more precise and involved than heating loads.

Winter Delta Temp. (°F)	42		Summer Delta Temp. (°F)	23	
Winter Building Load (Btuh)			Summer Building Load (Btuh)		
Window Load:	5199		Window Load:	6895	
Wall Load:	5399		Wall Load:	3126	6
Ceiling Load:	2479		Ceiling Load:	4308	3
Door Load:	0		Door Load:	0	
Floor Load:	10333		Floor Load:	0	
Infiltration Load:	6348		Infiltration Load:	2882	2
Building Subtotal	29757		Internal Gain:	1890)
Duct Loss:	3693		Duct Gain:	5347	
Mech Ventilation Loss:	0		Sensible Subtotal		24449
TOTAL HEATING LOAD	33450		Mech Vent. Sens. Load:	0	
TOTAL HEATING LOAD	00400		Blower Sens. Load:	0	
			Total Sensible Load		24449
			Infiltration Latent Load:	0	
			Mech Vent. Latent Load:	0	
		Pie Charts	DuctLatent Load:	83	
			Internal/Other Latent Load:	1600)
			Total Latent Load		1683
			TOTAL COOLING LOAD		26131

- Depending on the software, you must input all the surface information (geometry), either:
 - By manually typing it in item by item,
 - by re-drawing the floor plan in 2D in the software, or
 - By creating a simple 3D model in the software

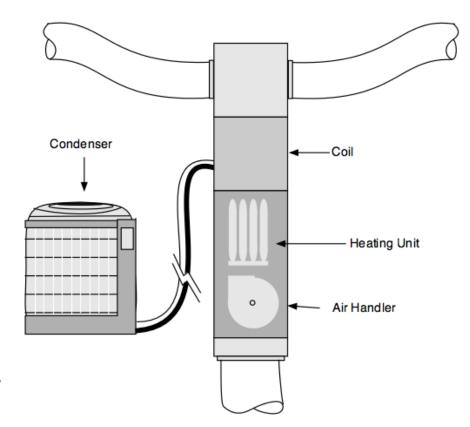


Screen snip from Kwik Model with EnergyGauge Loads

- The software will use that information to select the correct value from the Manual J tables to determine the heat transfer through each and every surface.
- As you can imagine, this is a lot of information to keep track of, especially for room-by-room loads.

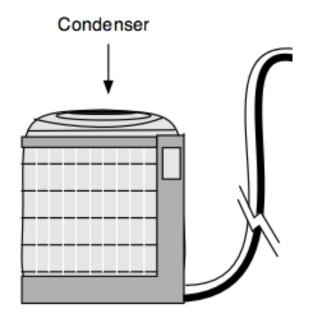
WallNum	Room	Туре	Net Area	Direction
1	mbed(3)	2x4 R-13 ~	102	Back
2	mbed(3)	2x4 R-13 ~	68	Right
3	mbed(3)	2x4 R-13 ~	83	Left
4	mbath(1)	2x4 R-13 ~	12	Back
5	mbath(1)	2x4 R-13 ~	16	Front
6	mbath(1)	2x4 R-13 ~	65	Left
7	bath2(1)	2x4 R-13 ~	60.5	Left
8	bed3(1)	2x4 R-13 ~	72	Front
9	bed3(1)	2x4 R-13 ~	124	Left
10	bed2(2)	2x4 R-13 ~	72	Front
11	bed2(2)	2x4 R-13 ~	92	Right
12	bed2(2)	2x4 R-13 ~	16	Left
13	liv/kit(3)	2x4 R-13 ~	154.5	Back
14	din(1)	2x4 R-13 ~	24	Front
15	din(2)	2x4 R-13 ~	8	Right
16	din(2)	2x4 R-13 ~	4	Left
17	din(4)	2x4 R-13 ~	26	Front
18	din(5)	2x4 R-13 ~	18.941	Front Left
19	din(3)	2x4 R-13 ~	18.941	Front Right
20	pdr(1)	2x4 R-13 ~	44	Back
21	pdr(1)	2x4 R-13 ~	119.333	Right
22	util(1)	2x4 R-13 ~	58	Front

- Once the room-by-room loads are done, they can be added up to get the <u>total</u> heating and cooling loads.
- The next step is to select the equipment.

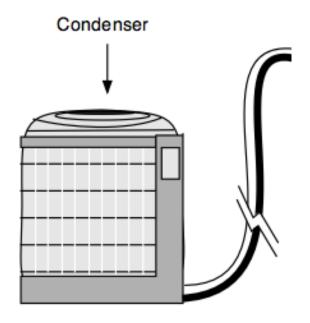


A Typical Split System

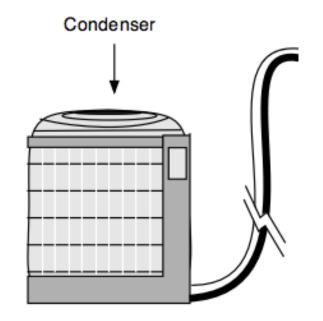
IVAC 1.0 INTRO TO RESIDENTIAL HVAC SYSTEMS


Images from HVAC 1.0 – Introduction to Residential HVAC Systems

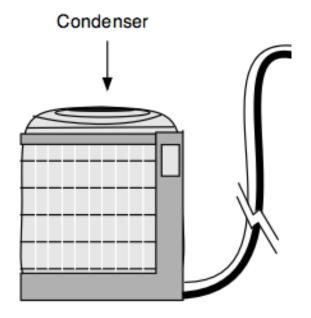
If it turns out that the total heating or cooling load is too large for a **single** piece of equipment, the house needs to be broken into smaller **zones** and a separate load calculation done on each one.


A Typical Split System

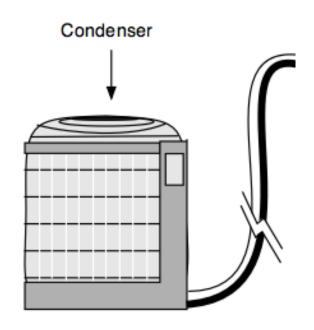
- Heat Pumps
- There are many good reasons for converting from gas to heat pump, not the least of which are rebates and other incentives.
- There are many myths about heat pumps that have given them bad reputations.

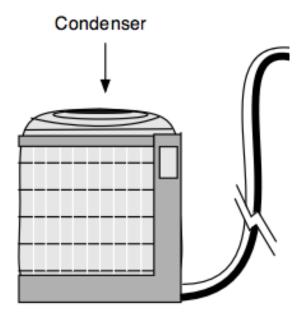

Heat Pumps

- The vast majority of these problems were due to bad duct design.
- Heat pumps have improved dramatically over the last few years.



Images from HVAC 1.0 – Introduction to Residential HVAC Systems


- Heat Pumps
- They are super efficient because the MOVE heat that already exists rather than creating heat from scratch.
- Heat pumps will work at much lower outdoor temperatures than many people realize, without relying on back up resistance electric strips.


- Heat Pumps
- Sizing Heat Pumps is certainly more complex than sizing furnaces, but not as difficult as many people think.
- Manual S covers heat pump sizing very well and Manual H goes into even more detail.

- Heat Pumps
- Because the air conditioner and heat pump are the same condenser, you should size for air conditioning first, then check to confirm that it is not undersized for heating. If it is, you can go to a larger condenser.

- Heat Pumps
- Undersizing heat pumps may cause them to run excessively on the backup resistance electric strips.
- The oversizing issues on the cooling side can be mitigated by good duct design and good airflow.

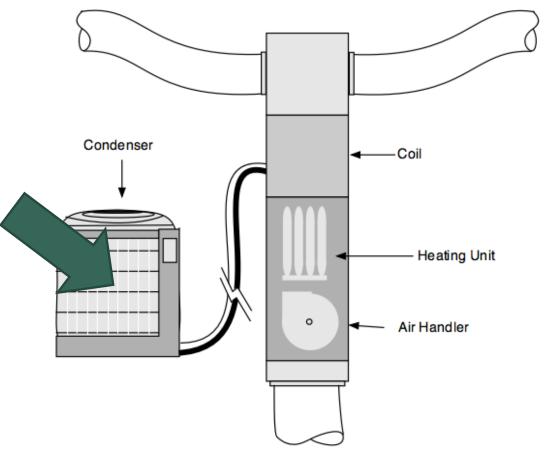
- Selecting a gas furnace to meet the heating load is relatively simple.
- Whatever the load is, pick the furnace with a heating capacity (output) just a bit higher than the load.

HVAC 1.0 INTRO TO RESIDENTIAL HVAC SYSTEMS

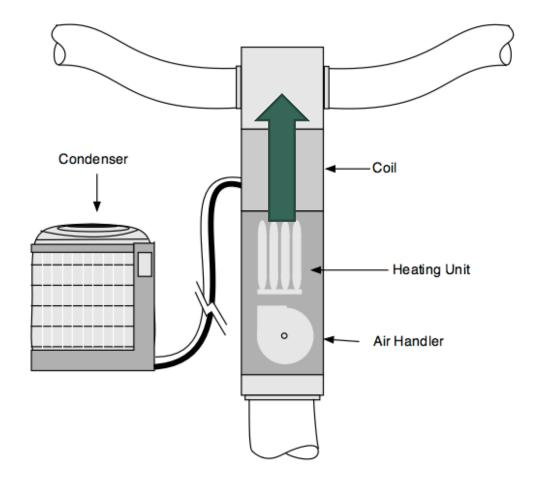
Screen snip from Kwik Model with EnergyGauge Loads

- But, don't forget that the furnace is also the airhandler and you will need to make sure that it provides adequate airflow for cooling.
- If it does not, you will have to go to a bigger furnace which can potentially result in oversizing.

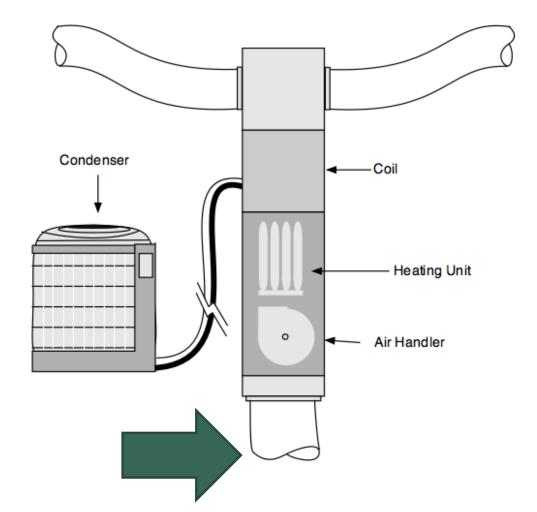
IVAC 1.0 INTRO TO RESIDENTIAL HVAC SYSTEM!


Screen snip from Kwik Model with EnergyGauge Loads

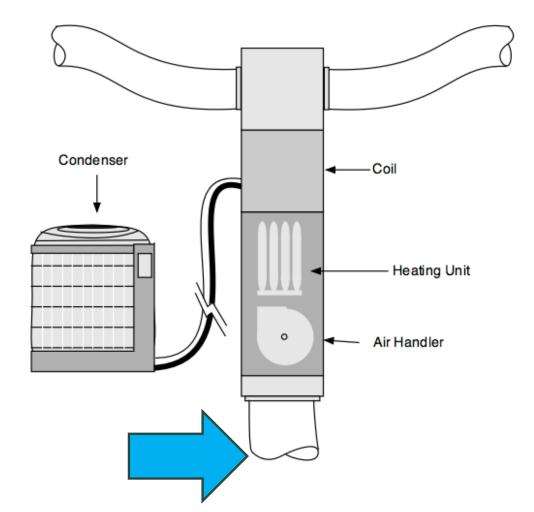
 Selecting an air conditioner is much more complicated than selecting a gas furnace and is covered in detail by ACCA Manual S


The reason it is more complicated is that many things affect its capacity.

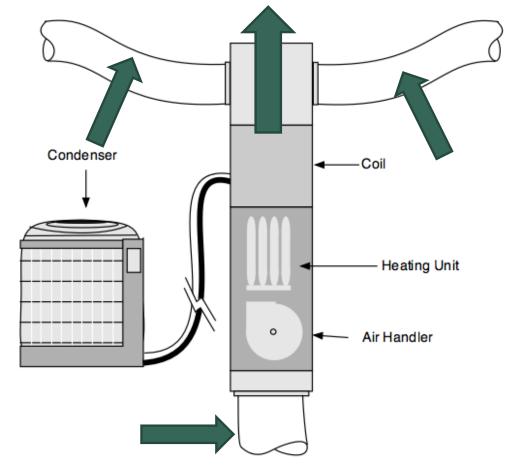
				Outdoor Ambien												NT TEMPERATURE				
			65ºF				75ºF				85°F 95°F									
											ENTERING INDOOR W				et Bulb Temperature					
IDB	Air	FLOW	59	63	67	71	59	63	67	71	59	63	67	71	59	63	67	71		
		MBh	17.9	18.1	18.7	-	17.7	18.0	18.5	-	17.3	17.5	18.0	-	16.4	16.7	17.2	-		
		S/T	0.62	0.54	0.40	-	0.62	0.55	0.40	-	0.65	0.57	0.43	-	1.00	0.59	0.45	-		
		ΔT	19	17	14	-	19	17	14	-	19	18	14	-	19	17	14	-		
70	525	kW	1.06	1.05	1.05	-	1.17	1.17	1.17	-	1.30	1.30	1.30	-	1.45	1.45	1.44	-		
		Amps	4.0	4.0	4.0	-	4.5	4.5	4.5	-	5.1	5.1	5.1	-	5.8	5.8	5.8	-		
		HI PR	244	245	247	-	283	284	286	-	323	325	326	-	367	368	370	-		
		LO PR	125	126	129	-	132	134	137	-	139	141	144	-	145	146	149	-		
		MBh	18.1	18.4	18.9	-	18.0	18.2	18.8	-	17.5	17.8	18.3	-	16.7	17.0	17.5	-		
		S/T	0.69	0.61	0.47	-	0.69	0.62	0.48	-	0.72	0.64	0.50	-	1.00	0.66	0.52	-		
		ΔΤ	18	16	13	-	18	16	13	-	18	16	13	-	18	16	13	-		
	610	kW	1.06	1.06	1.06	-	1.18	1.18	1.18	-	1.31	1.31	1.31	-	1.45	1.45	1.45	-		
		Amps	4.0	4.0	4.0	-	4.6	4.6	4.6	-	5.2	5.2	5.2	-	5.8	5.8	5.8	-		
		HI PR	247	248	250	-	285	286	288	-	326	327	329	-	369	370	372	-		
		LO PR	127	128	131	-	134	136	139	-	141	143	146	-	147	148	151	-		
		MBh	18.4	18.6	19.2	-	18.2	18.5	19.0	-	17.8	18.0	18.5	-	16.9	17.2	17.7	-		
		S/T	0.72	0.64	0.50	-	0.73	0.65	0.51	-	0.75	0.67	0.53	-	1.00	0.69	0.55	-		
		ΔT	17	16	12	-	17	15	12	-	17	16	12	-	17	15	12	-		
	675	kW	1.07	1.07	1.06	-	1.18	1.18	1.18	-	1.32	1.31	1.31	-	1.46	1.46	1.46	-		
		Amps	4.1	4.1	4.0	-	4.6	4.6	4.6	-	5.2	5.2	5.2	-	5.8	5.8	5.8	-		
		HI PR	248	250	251	-	287	288	290	-	328	329	330	-	371	372	374	-		
		LO PR	128	130	133	-	136	138	141	-	143	144	147	-	148	150	153	-		
																			Т	
		MBh	17.9	18.1	18.7	19.5	17.7	18.0	18.5	19.3	17.3	17.5	18.1	18.9	16.5	16.7	17.2	18.1		
75		S/T	0.75	0.67	0.53	0.38	0.76	0.68	0.54	0.39	1.00	0.70	0.56	0.42	1.00	0.72	0.58	0.44		
	5.05	ΔΤ	23	21	18	15	23	21	18	15	23	22	18	15	23	21	18	15		
	525	kW	1.05	1.05	1.05	1.06	1.17	1.17	1.17	1.18	1.30	1.30	1.30	1.31	1.45	1.45	1.44	1.45		
		Amps	4.0	4.0	4.0	4.0	4.5	4.5	4.5	4.6	5.1	5.1	5.1	5.2	5.8	5.8	5.8	5.8		
		HI PR	245	246	247	252	283	284	286	290	324	325	326	331	367	368	370	374		
	<u> </u>	LO PR	125	126	129	135	132	134	137	142	139	141	144	149	145	146	149	155	╀	
		MBh	18.2	18.4	18.9	19.8	18.0	18.2	18.8	19.6	17.5	17.8	18.3	19.1	16.7	17.0	17.5	18.3		
		S/T	0.82	0.74	0.60	0.46	1.00	0.75	0.61	0.46	1.00	0.78	0.64	0.49	1.00	0.80	0.66	0.51		
	610	ΔT	22	20	17	13	22	20	17	13	22	20	17	14	22	20	17	13		
	610	kW	1.06	1.06	1.06	1.07	1.18	1.18	1.18	1.19	1.31	1.31	1.31	1.32	1.45	1.45	1.45	1.46		
		Amps	4.0	4.0	4.0	4.1	4.6	4.6	4.6	4.6	5.2	5.2	5.2	5.2	5.8	5.8	5.8	5.9		
		HI PR	247	248	250	254	286	287	288	293	326	327	329	333	370	371	372	377		
	<u> </u>	LO PR	127	128	132	137	134	136	139	144	141	143	146	151	147	148	151	157	╀	
	1	MBh	18.4	18.6	19.2	20.0	18.2	18.5	19.0	19.8	17.8	18.0	18.5	19.4	17.0	17.2	17.7	18.6	Т	


- An air conditioner's capacity (its ability to cool) is affected by:
 - The outdoor temperature
 - The amount of air blowing across the evaporator coil
 - The indoor temperature
 - The indoor humidity

- An air conditioner's capacity (its ability to cool) is affected by:
 - The outdoor temperature
 - The amount of air blowing across the evaporator coil
 - The indoor temperature
 - The indoor humidity



- An air conditioner's capacity (its ability to cool) is affected by:
 - The outdoor temperature
 - The amount of air blowing across the evaporator coil
 - The indoor temperature
 - The indoor humidity


- An air conditioner's capacity (its ability to cool) is affected by:
 - The outdoor temperature
 - The amount of air blowing across the evaporator coil
 - The indoor temperature

The indoor humidity

• Airflow is affected by duct sizes.

- This means that duct sizing can have a big impact on cooling capacity.
- Oversizing air conditioners and undersizing ducts is one of the most common causes of comfort complaints in homes.

SUMMARY

- I. Introduction
 - ACCA Manuals
 - Capacity vs. Load
 - Oversizing vs Undersizing
- 2. Overview of the HVAC Design Process.
 - I. **Collect** information about the house
 - 2. Perform room-by-room load calculations (Manual J)
 - 3. Select equipment to meet the total loads (Manual S)
 - 4. **Design** the distribution system (Manual D)
- 3. Manual J Load Calculations
- 4. Manual S Equipment Selection

END OF PART I

SEE YOU THURSDAY FOR PART 2!

QUESTIONS TO: RUSS@CODED-ENERGY.COM

Closing

- Continuing Education Units Available
 - Contact ggautereaux@co.slo.ca.us for AIA LUs
- Coming to Your Inbox Soon!
 - Slides, Recording, & Survey Please Take It and Help Us Out!
- Upcoming Courses:
 - Introduction to Passive House 4hr (5/1)
 - Is Mechanical Ventilation Really Necessary? (5/2)
 - 2022 CALGreen Code for Residential and Non-Residential (5/4)
 - Crafting High Performance Enclosures: Roofs, Walls, and Floors (5/4)
 - 2022 Energy Code: Non-Residential (5/17)

Thank you!

For more info: 3c-ren.org

For questions: info@3c-ren.org

TRI-COUNTY REGIONAL ENERGY NETWORK SAN LUIS OBISPO · SANTA BARBARA · VENTURA