Passive House Windows

From Design to Install

The Passive House Network

3C-REN: Tri-County Regional Energy Network

- Three counties working together to improve energy efficiency in the region
- Services for -
 - Building Professionals: industry events, training, and energy code compliance support
 - Households: free and discounted home upgrades
- Funded by ratepayer dollars that 3C-REN returns to the region

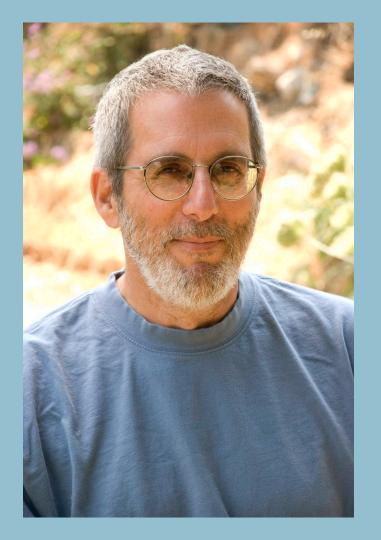
- Serves all building professionals
- Three services
 - Energy Code Coach
 - Training and Support
 - Regional Forums
- Makes the Energy Code easy to follow

Energy Code Coach: 3c-ren.org/codes 805.781.1201 Event Registration: **3c-ren.org/events**

- Serves current and prospective building professionals
- Expert instruction:
 - Technical skills
 - Soft skills
- Helps workers to thrive in an evolving industry

Multifamily (5+ units)

- No cost technical assistance
- Rebates up to \$750/apartment plus additional rebates for specialty measures like heat pumps
 Single Family (up to 4 units)
- Sign up to participate!
- Get paid for the metered energy savings of your customers



Passive House Windows

From Design to Install

Meet the Trainer

Steve Mann

Certified Passive House Designer/ Tradesperson / Building Certifier

Principal / Home Energy Services

Trainer / PHN

Presentation Outline

- 1. Introduction to PH Windows
- 2. How to Design and Detail Passive House Windows

-BREAK

- 3. Calculating Passive House Windows
- 4. How to Install Passive House Windows

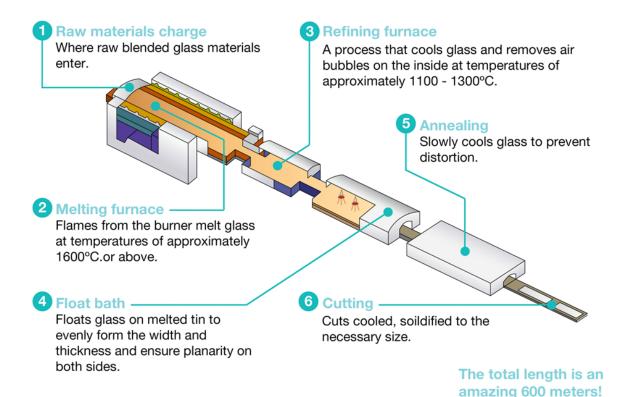
Section 1: Introduction to Passive House Windows Why Windows Matter

Why Windows Matter?

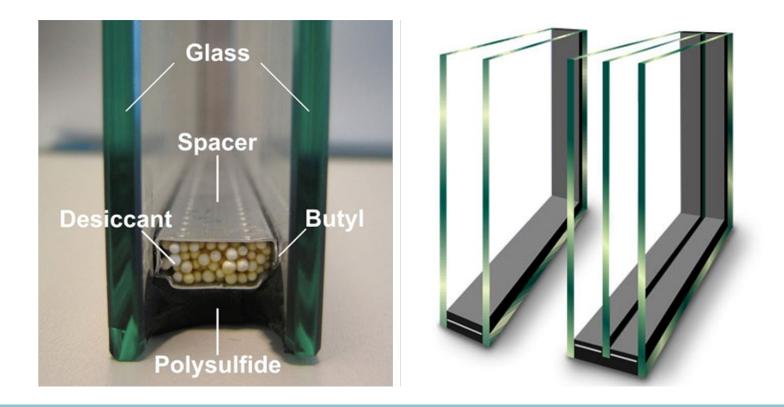
- Comfort
- Daylight
- Aesthetics
- Performance
- Energy Efficiency
- Energy Capture
- Ventilation
- Egress

A Brief History of Fenestration

Crystal Palace: 1851, Joseph Paxton



Johnson Wax Admin Building : 1939, Frank Lloyd Wright



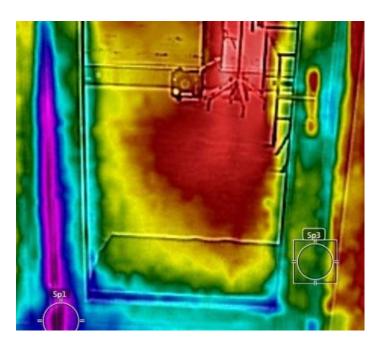
New Technology: Commercial Float Glass

Insulated Glass Units (IGUs)

COMFORT DRIVERS

Comfort & Health

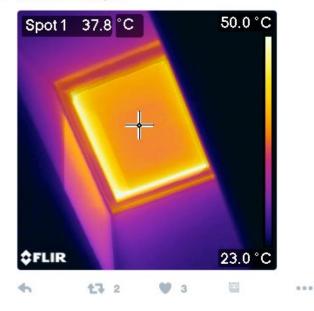
- Thermal Comfort (6 factors)
- Visual Comfort (glare)
- Acoustic comfort (loud noises)
- Hygienic comfort (air pollutants or mold)



Poor Window Performance

- Condensation
- Summertime Overheating
- Glare

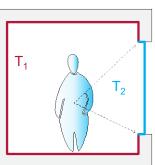
- Drafts
- Winter Heat Loss
- Mold Growth

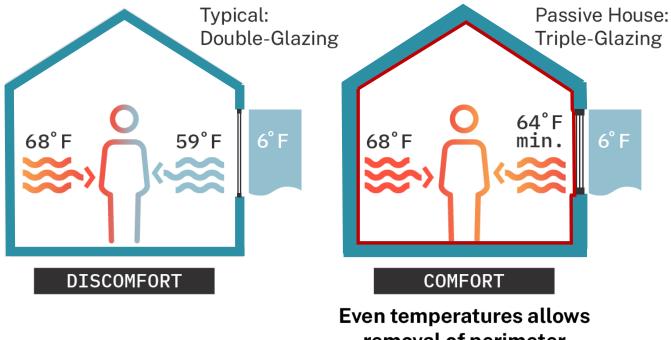

Window Comfort and Health Concerns

Nick Grant @ecominimalnick · 1h

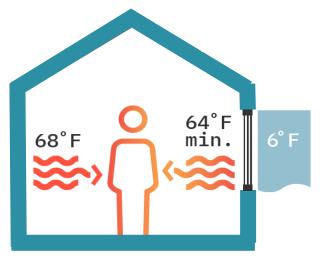
Feeling warm in my office despite 23°C air temperature. Feels like a radiator is

on, I wonder why??




Radiation Temperature Asymmetry

Uglass Matters



removal of perimeter mechanical systems

PH Comfort and Hygiene Criteria

- Comfort Criterion The minimum average window surface temperature can be no lower than 7.56 °F (3.5°C) than the average interior surface temperature. Based on the installed U value of a window.
- 2. Hygiene Criterion sets limits that restrict the minimum interior surface temperature at the coldest point of the interior surface per climate zone, eliminating the potential for condensation and mold growth. Measured by climate specific temperature factors (f_{Rsi}).

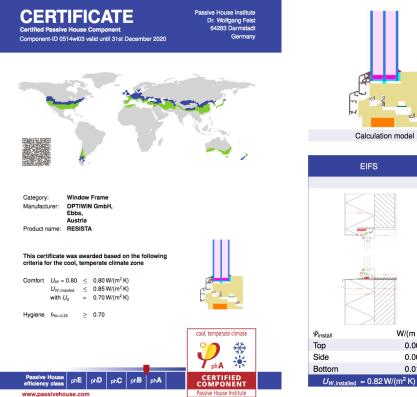
PASSIVE HOUSE WINDOW CERTIFICATION

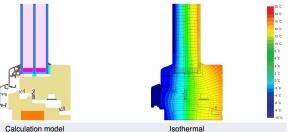
Passive House Component Certification

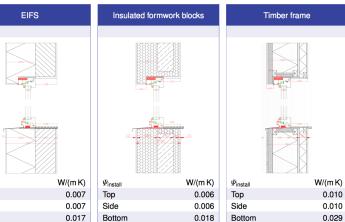
Transparent building envelope Windows Roof windows **Skylights Curtain wall systems** Glass roofs Openable elements in glass roof Shutters **Entry doors Sliding doors** Glazing **Glazing edge bonds**

Component Database

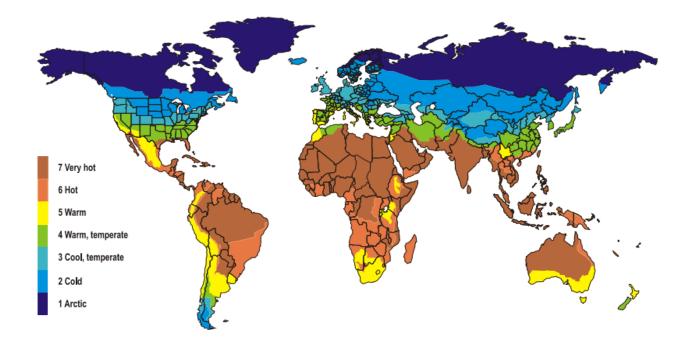
https://database.passivehouse.com/en/components/


What Makes a PH Window





Certified PH Windows



 $U_{W,\text{installed}} = 0.82 \,\text{W}/(\text{m}^2 \,\text{K})$

 $U_{W,\text{installed}} = 0.84 \text{ W/(m^2 \text{ K})}$

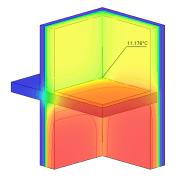
Choose the Right Window for Your Climate

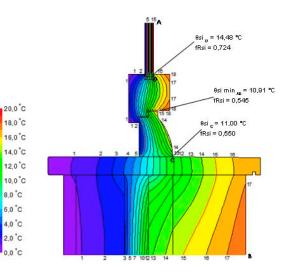
Certification Criteria & Reference Glazing

Climate Zone	Hygiene criterion: f _{Rsi} ≥ 0. 70hr.ft ² .ºF/Btu	U-value (Component) Btu/ hr.ft ² .ºF	U-value (installed) Btu/ hr.ft ².ºF	Reference glazing* Btu/ hr.ft ².ºF
1. Arctic	0.80	0.07	0.08	0.06
2. Cold	0.75	0.10	0.11	0.09
3. Cool Temperate	0.70	0.14	0.15	0.12
4. Warm Temperate	0.65	0.18	0.18	0.16
5. Warm	0.55	0.21	0.22	0.19
6. Hot	None	0.21	0.22	0.19
7. Very Hot	None	0.18	0.18	0.16

* Reference Glazing:

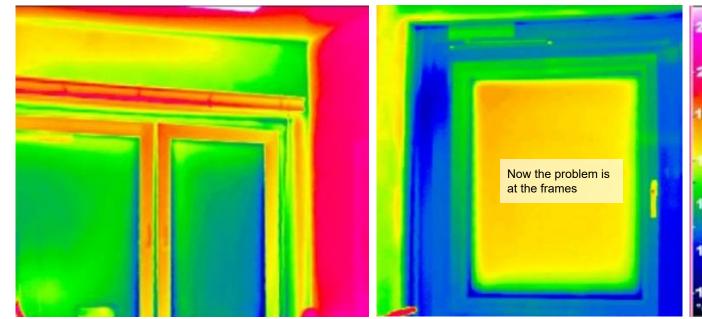
- The U-values used by PHI for glazing are the same for all window frames being certified irrespective of the type of glass *actually* being used.
- With some manufacturers, you get better than what is on the PHI Certificate
- PHI use 0.12 for glass U-value, but some firms supply 0.10 or even less, (15% better)


Mold Prevention at Interior Surfaces


The fRsi factor allows us to evaluate a given construction to assure mold resistance, for mold resistance, the fRsi factor must be greater than the climate specific limit

 $\mathbf{f}_{\mathrm{Rsi}} = (\mathbf{t}_{\mathrm{si}} - \mathbf{t}_{\mathrm{e}}) \div (\mathbf{t}_{\mathrm{i}} - \mathbf{t}_{\mathrm{e}})$

- $\boldsymbol{f}_{\text{Rsi}}$ Temperature factor at the internal surface
- t_{si} Interior Surface Temp
- t_e Exterior Design Temp
- t_i Interior Design Temp

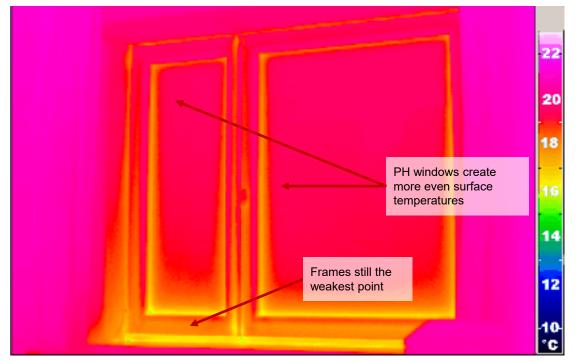


Note: For f_{Rsi} calculation, surface temps and exterior conditions must be modeled as per ISO 10211 & 13788

Glazing and Frame Performance

Typical Windows: Poor glazing and Frame

Improved Glazing and Low -e Coatings


As window performance increases frames become the weakest link!

Outdoor -5°C (14°F) Indoor 20 °C (68 °F)

Frames Determine Certification Class

PH Glass and Frame

The better the frame performs the higher certification class!

Four PHI Window Classes

Passive House Efficiency Class	Description	Ψ_{opaque}
phA+	Very advanced component	≤ 0.037 Btu/h ft.º F
phA	Advanced component	≤0.063 Btu/hr.ft.°F
phB	Basic component	\leq 0.089 Btu/hr.ft.°F
phC	Certifiable component	≤0.115 Btu/hr.ft.°F

$$\Psi_{_{opaque}} = \Psi_g + \frac{U_f \cdot A_f}{\mathcal{L}_{spacer}}$$

 Ψ_g =Psi-value of the glazing spacer U_f = U-value of the frame A_f = area of the frame L_{spacer} = length of the glazing spacer

PH WINDOW TYPES AND APPLICATIONS

Passive House Window Types

- Windows
- Operable and fixed
- Entry Doors
- Sliding doors
- Skylights
- Pitched and flat
- Curtain walls
- Glass roofs

Window Materials

Aluminium -Clad Wood

All Aluminium

uPVC

All Wood

Fiberglass

Tilt and Turn Operation

OPENING OPTION I OPENING OPTION 2 TILT OPEN TURN OPEN

Source: Bespoke Windows CA

Tilt and Turn Windows

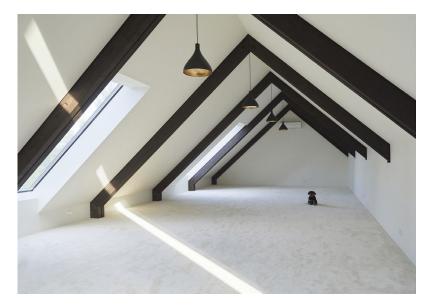
- Most common operation type
- Continuous seal
- Limited in size and shape
- In-swing only

Fixed Windows

- Typically, best performing
- Greater size and shape options
- Less expensive
- Installation can be trickier

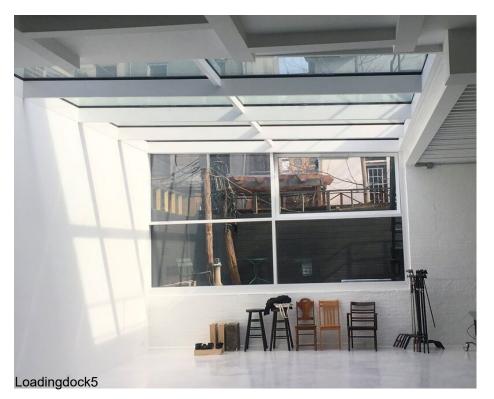
Passive House Entry Doors

- Continuous air seal
- Thicker profile
- Multiple point locking system
- Uses triple pane glass or super insulated panels


Lift and Slide Doors

- Airtight
- Large openings
- Triple pane glass
- Heavy units shipping and installation can be tricky
- Operation is different than normal swing doors

Skylights

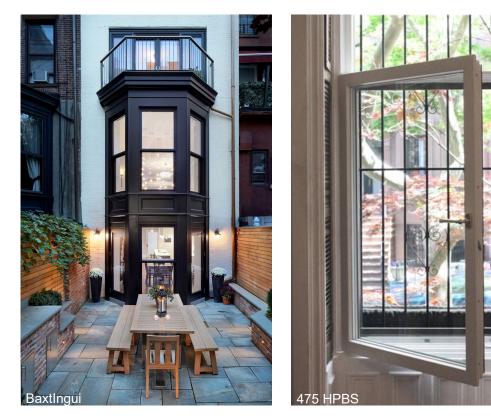


- Pitched or flat roof
- Insulated curbs and frame
- Triple pane glass

- Operable or fixed
- Shading is important
- Only a few certified options

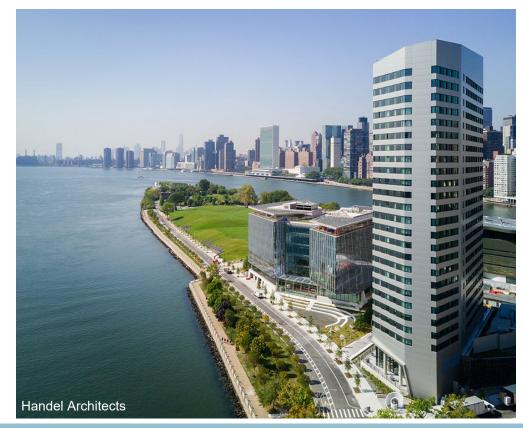
Curtain Walls and Glass Roofs

- Commercial applications
- Thermally broken profiles
- Operability for ventilation and egress



Single Family Home

Historic Retrofits



PH Multifamily: Candela Lofts

PH High - Rise

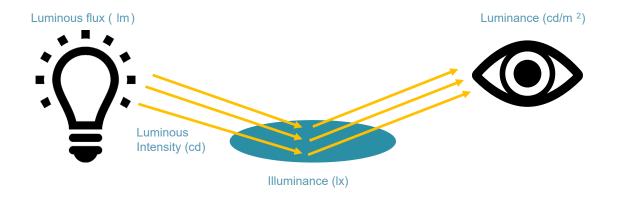
Section 2: How to Design & Detail Passive House Windows Utilizing your High-Performance Windows

Fenestration 101 Photometry, Shading, Orientation & Daylight modeling



What is Happening Here?

Daylight Potential

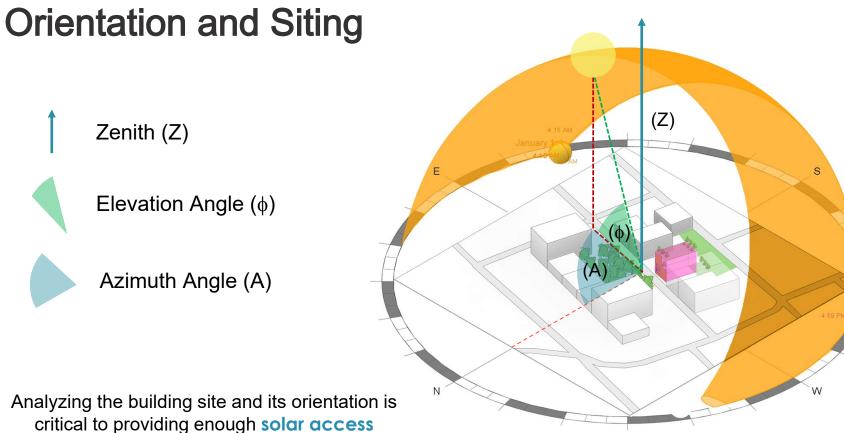

Photometry Terms and Units

Luminous Flux:Is the total quantity of visible light emitted by a source
per unit of time , measured in Lumens (Im)Illuminance:Is the total Luminous Flux that hits a surface, measured as
Lux (Ix)

Lux = Lumen / m^2

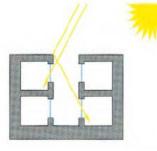
 Luminous Intensity:
 The amount of visible light emitted by a source in a given direction, measured in
 Candelas (cd)

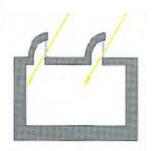
 Luminance:
 Is the Luminous Intensity (Candela)
 over a specific area measured as Candela/m²

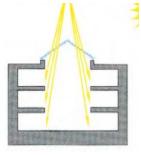


Daylighting Goals

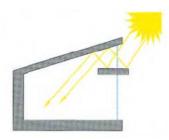
- Uniform levels
- No Glare
- Quality of Light
- Commercial vs Residential
- No Overheating

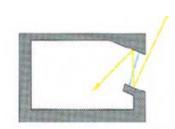


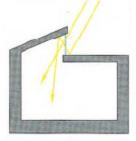

Source: Keivani Architects

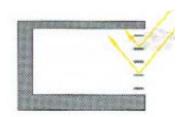

Daylighting Strategies for Buildings


Light Well

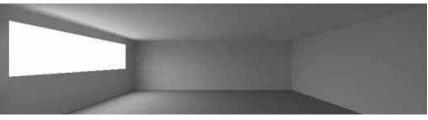

Roof Monitors

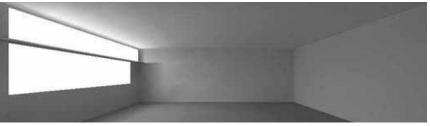

Atrium


Light Duct


Light Shelf

External Reflectors

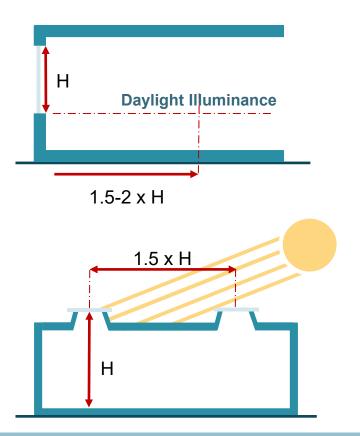

Clerestory


Reflective blinds

Daylighting with Skylights

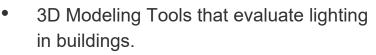
Window with blinds

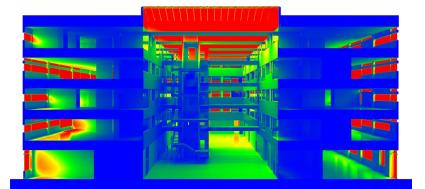
Clerestory with Light Shelf and blinds

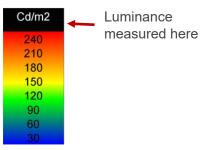

Skylights with splayed light wells

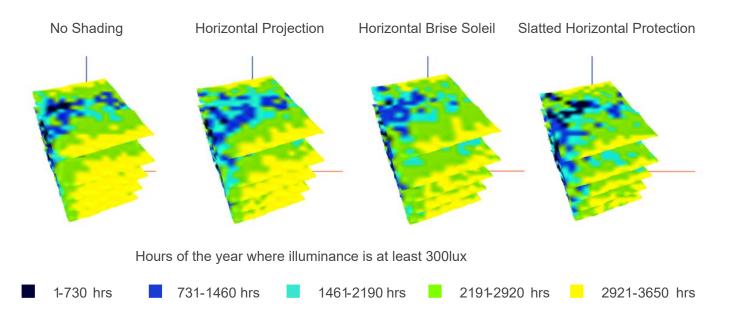
AAMA Skylight Council

Daylighting Rules of Thumb

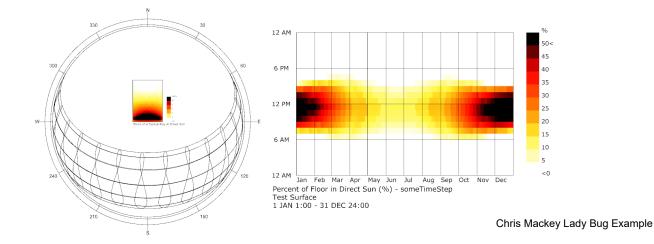

- Windows provide daylight 1.0 2x the head height of light deep into the space.
- Space skylights at 1.0 1.5 times the ceiling height (center -to-center in both directions).
- Skylights can **be 3 10 times smaller** than a window and collect the **same amount of light**.



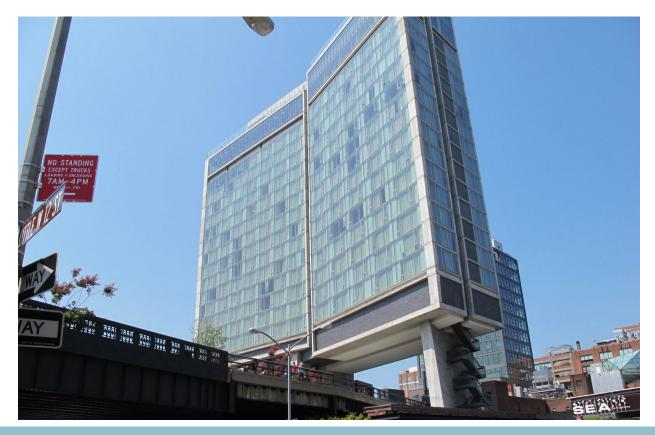

Daylight Modeling


- Can be used to model lighting levels from natural & artificial sources.
- Photo realistic renderings and/or False -Color Images.
- Different goals for residential vs commercial construction.

Spatial Daylight Autonomy (sDA)

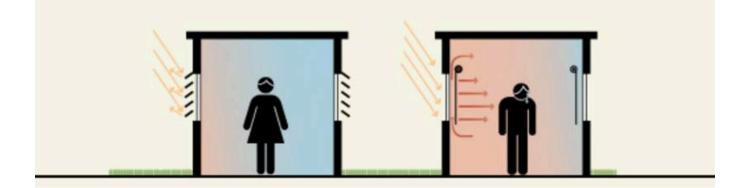

Satisfactory is sDA300/50% (more than 300 lux for more than 50% of the 10hr workday)

Source: Sketchup Blog


Annual Sunlight Exposure (ASE)

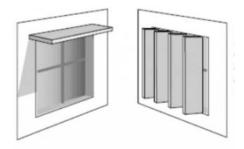
- How much space receives too much direct sunlight
- Indicator of possible visual or thermal discomfort
- ASE1000.250 percent of floor that has >1000 lux for >250hrs per occupied year
- Used in Commercial Projects

What's Happening Here?

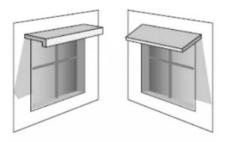


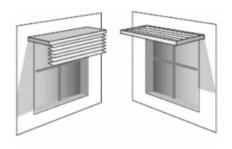
Balanced Fenestration

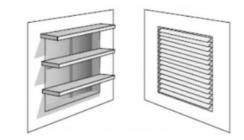
Shading Strategies



External Shades vs. Internal


Source: Mansour Glass


Exterior Shading Strategies


Standard overhangs for Southern windows and vertical fins for east west orientations

Dropping the edge or angling the overhang reduces the overhang length while maintaining the same shading

Using Louvers or slatted features lets in more daylight while still providing shading

Breaking up the overhang allows for smaller projection lengths

https:// www.researchgate.net /figure/External -Shading-Devices

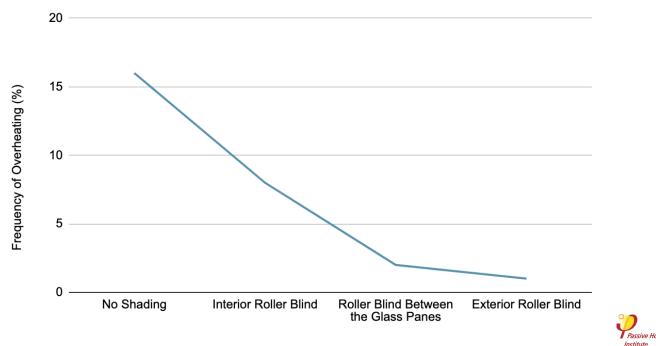
Shading Strategies

Solar Study: Hudson Passive House

Sun Path at Noon

January/December

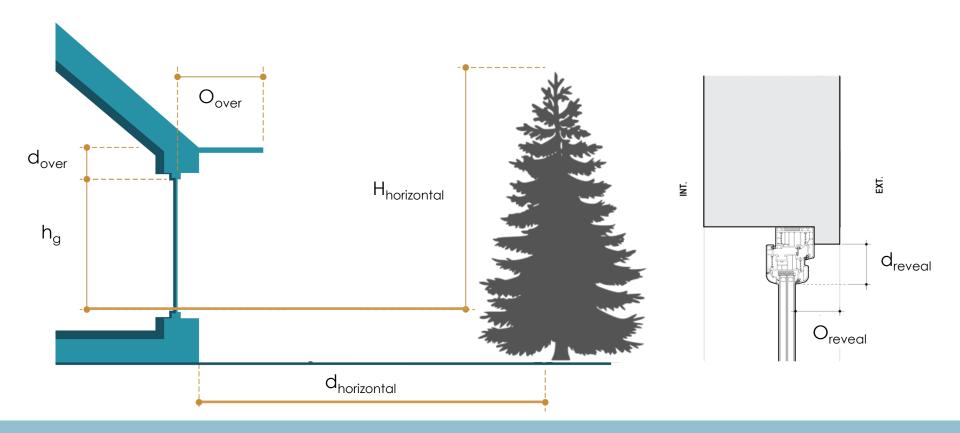
June


Daylight modeling can be useful to calibrate the shading strategy during the design phase

BarlisWedlick

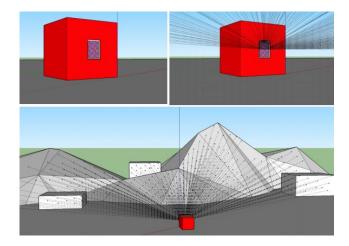
Shading Effectiveness

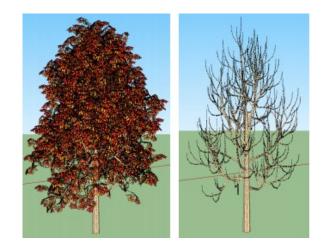
PHPP Four Types of Shading


- 1. Shading object, e.g. nearby building, trees, garden walls
- 2. Window reveals (sides of the window)
- 3. Overhang (top reveal of the window, or balcony / roof overhang, whichever is greater)
- 4. Additional shading (user -determined)

Shading sheet calculates both summer and winter shading (therefore additional shading reduction factor can be calculated for both seasons with different sun angles).

Horizon		Lateral reveal		Reveal / Overhang				
Height of the shading object	Horizontal distance	Window reveal depth	Distance from glazing edge to reveal	Overhang depth	Distance from upper glazing edge to overhang		Additional reduction factor summer shading	Reduction factor z for temporary sun protection
h _{Hori} [ft]	d _{Hori} [ft]	o _{Reveal} [in]	d _{Reveal} [in]	o _{over} [in]	d _{over} [in]	r _{other,w} [%]	r _{other,s} [%]	z [%]
							*	
							•	




Shading (per Window)

Shading With DesignPH

- 1. More accurate shading analysis.
- 2. Sketchup Plug in.
- 3. Generates a shading mask for each window by ray tracing.
- 4. Essential for modelling complex shading elements.
- 5. Can hide and unhide objects to quickly model changes in landscape (deciduous trees).

PERFORMANCE AND COMPONENTS

Window Performance

- Orientation
- Shading
- SHGC & VT
- Airtightness

- Glazing U-value
- Frame U-value
- Psi Spacer
- Installation/integration

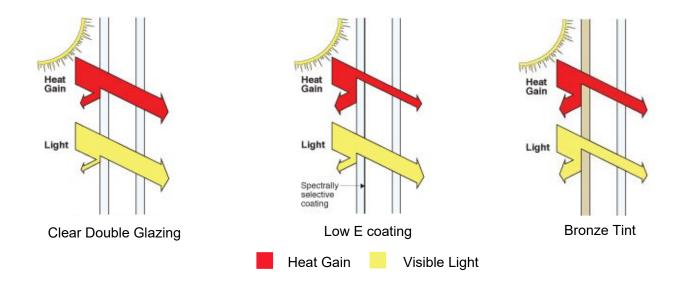
Traditional vs Passive Windows

Traditional American Double Hung

European Tilt and Turn

PH Window Components

- 1. Triple -pane IGU
- 2. Continuous Airtight gasket
- 3. Warm Edge Spacer
- 4. Thermally broken frame
- 5. Over insulation around frame

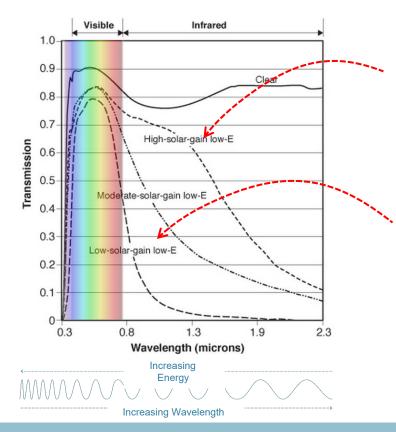


Measuring Window Component Performance

- 1. U-value the rate of transfer of heat through matter, also known as Thermal Transmittance. The lower the U -value the slower heat moves through the unit and the better it insulates.
- Solar Heat Gain Coefficient (SHGC) is the fraction of incident solar radiation admitted through a window, both directly transmitted and absorbed and subsequently released inward. SHGC is expressed as a number between 0 and 1. The lower a window's solar heat gain coefficient, the less solar heat it transmits.
- **3.** Visual Transmittance (VT) is a fraction of the visible spectrum of sunlight that is transmitted through the glazing of a window. VT is expressed as a number between 0 and 1. A window with a higher VT transmits more visible light.
- **4.** Air Leakage is the amount of air that leaks through the window (not measured in PH certification but may be calculated in NFRC testing). Lower is better.

SHGC vs Visual Transmittance

VT to SHGC Ratio

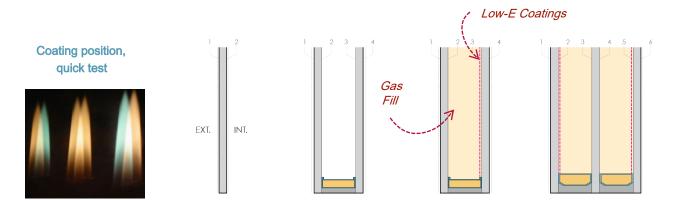

Sunglasses (bronze tint) between 1 and 1.2 Better/desired 2 Maximum theoretically possible 2.5

Optimize diffuse daylight

High VT combined with orientation / shading solutions

Low-E Coating and SHGC

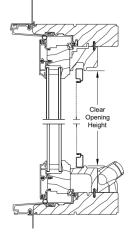
In heating dominated climates, HIGH SHGC specification can be beneficial for south facing windows.

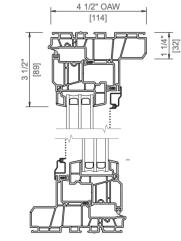

HOWEVER - US climates use with caution! Can lead to significant overheating if not shaded properly.

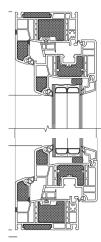
In cooling dominated climates, this specification might be required to prevent over -heating.

BUT - low solar gain glass might also be needed on east and west facing windows in heating dominated climates to prevent over-heating!

Types of Glass: IGUS and Heat Loss




Glazing	Single	Double with air fill + Aluminum Spacers	Double Low-E with gas fill + Aluminum spacers	Triple Low -E with gas fill + Plastic Spacers
U _g 0.09	1.00	0.50	0.18-0.28	0.09 - 0.14
Int. Surface Temp*	28.8 °F	48.4°F	59.5°F	63.5°F
SHGC	0.85	0.76	0.5 - 0.68	0.4 - 0.62


Source: Passipedia.org

Evolution of Window Performance

Frame Type	Marvin Double Glazed	Pella 350	Passive House Triple Glazed*
U-Value (Btu / hr.ft2.°F)	0.38	0.26	0.13
R-Value (hr.ft2. °F/ Btu)	2.6	3.9	7.6

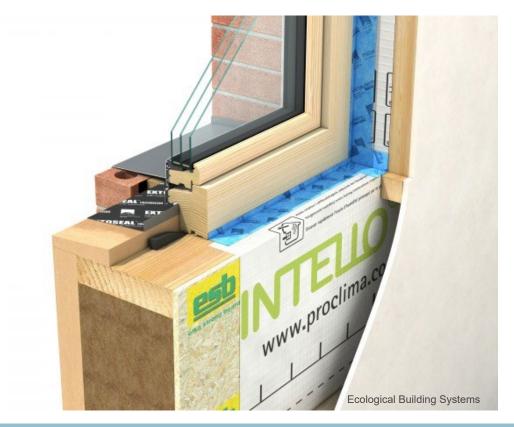
Window Detailing Installation Matters

PH Window Detailing

Thermal Bridge Free Installation

475 High Performance Building Supply

Interior


Exterior

Window continuity to control layers!Water, Air, and Thermal

Source: BLDGtyp Wisconsin Cabin

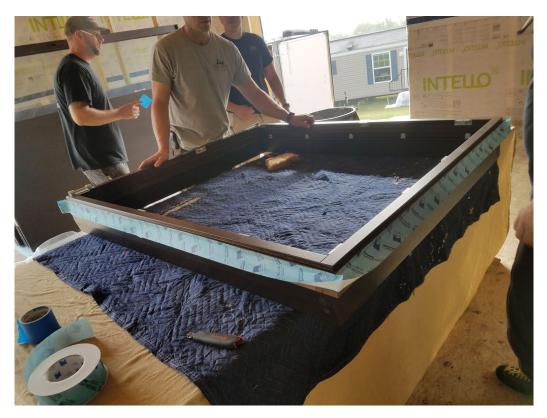
4

BLDGtyp

Case Study: Single Family New Build EASTONCOMBS, New Marlborough, MA

Window Installation

Window Transportation and Unloading Windows



Preparing the Rough Opening

Zero Reveal Taping

Independent Sash and Frame Installation

Continuous Airtightness

Large Openings

Delivery Limitations

Building the Frame Onsite

Site Glazing

Installed Lift and Slide Unit

Window Install Complete

Window Integration Detail

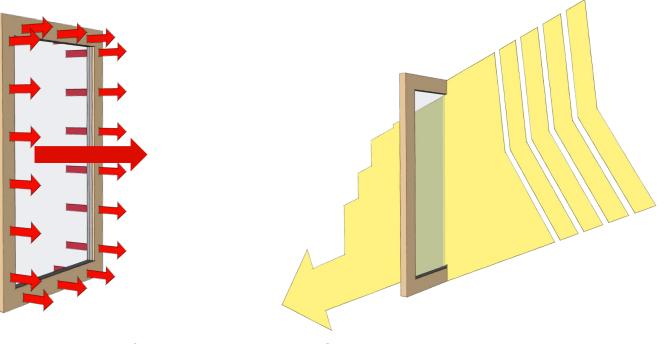
Integration of the Thermal Layer

Control Layers Completed

Finish Siding

Successful Completion

Section 3: Calculating Passive House Windows How to Transform Windows into Solar Panels



PH WINDOW ENERGY BALANCE CALCULATION

Energy Balance: Heat Loss vs Heat Gain

Heat loss through the glass, frame and spacer/installation thermal bridges

Solar heat gain through the glass

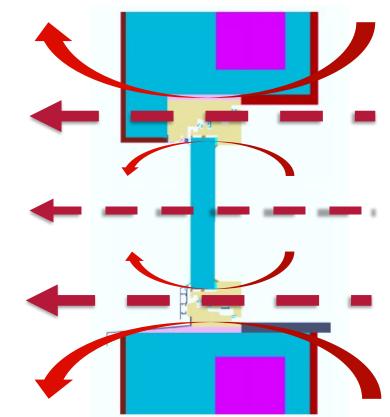
Energy Balance: South Facing Window

Passive House Institute

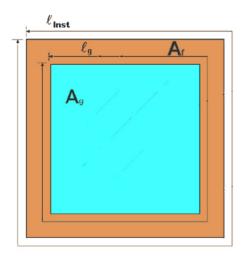
PH Window Energy Balance Calculation

- 1. Calculate Transmission Losses; U -value
- 2. Calculate Window Thermal Bridges: <u>Wspacer and Winstall</u>
- 3. Solar Gains and Shading Calculation
- 4. Window Energy Balance

WINDOW CALCULATIONS: Heat Losses and U -Value



Window Losses By Component


Heat Loss

- 1. Glass (U_g)
- 2. Frame (u_f)
- 3. Glass edge(Ψ_{spacer})
- 4. Installation ($\Psi_{installation}$)

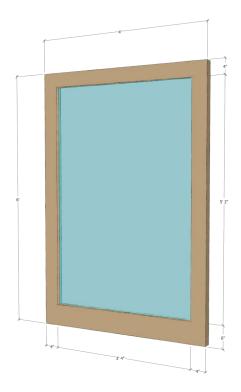
PH Window U-Value Calculation

Glazing surface area Frame surface area Glass edge length Frame edge length

$$U_{w} = \frac{A_{g} U_{g} + A_{f} U_{f} + l_{g} \Psi_{g} (+ l_{Inst} \Psi_{Inst})}{A_{g} + A_{f}}$$

 $I_{\rm g}$

(glazing) Ag A_f (frame) (glazing perimeter) $I_{\rm Inst}$ (frame perimeter)



Four Different Window U -Values (Area -Based)

Calculate UW -Installed

Window Measurements:

Width (to outside of frame): 4' -0" Height (to outside of frame): 6' -0"

Frame Width (top, 2 sides): 4" Frame Width (bottom): 6" $U_g = 0.08 \text{ Btu/hr} \cdot \text{ft}^2 \cdot \text{F}$ $U_f = 0.11 \text{ Btu/hr} \cdot \text{ft}^2 \cdot \text{F}$ Psi-spacer = 0.06 Btu/ hr-ft -F Psi-Install = 0.01 Btu/ hr-ft -F

Tip on calculation of areas and lengths:

- 1. Draw a small sketch of window with all its dimensions
- 2. First calculate A $_{\rm w},$ then A $_{\rm g}.$ Then subtract A $_{\rm g}$ from A $_{\rm w}$ to calculate A $_{\rm F}$

Calculate Window Areas & Lengths

$$U_{w-installed} = \frac{(U_g \times A_{glass}) + (U_f \times A_{frame}) + (\Psi_{spacer} \times L_{spacer}) + (\Psi_{install} \times L_{install})}{A_{window}}$$

$$A_{win} = w_w \times h_w = 4'-0" \times 6'-0" = 24 \text{ ft}^2$$

$$A_{glass} = w_g \times h_g = 3'-4" \times 5'-2" = 17.2 \text{ ft}^2$$

$$A_{frame} = A_{win} - A_{glass} = 24 \text{ ft}^2 - 17.2 \text{ ft}^2 = 6.8 \text{ ft}^2$$

$$L_{spacer} = 2 w_g + 2 h_g = 2 \times 3'-4" + (2 \times 5'-2") = 17'-0"$$

$$L_{installation} = 2 w_w + 2 h_w = 2 \times 4'-0" + (2 \times 6'-0") = 20'-0"$$

Calculating UW -Installed

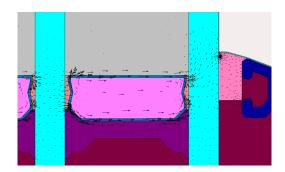
U_{w-installed} =

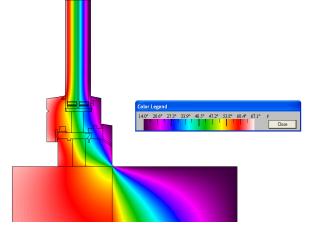
 $(U_{g} \times A_{glass}) + (U_{f} \times A_{frame}) + (\Psi_{spacer} \times L_{spacer}) + (\Psi_{installed} \times L_{installed})$

 A_{window}

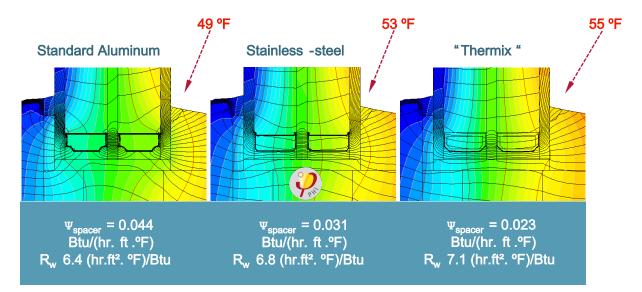
 $\begin{aligned} \mathsf{U}_{\text{w-installed}} &= 0.08 \; \text{Btu/(hr.ft^2.°F)} \; \times \; 17.2 \; \text{ft}^2 \; + \; 0.11 \; \text{Btu/(hr.ft^2.°F)} \; \times \; 6.8 \; \text{ft}^2 \\ &+ \; 0.06 \; \text{Btu/(hr.ft.°F)} \; \times \; 17' \text{-} 0" \; + \; 0.01 \; \text{Btu/(hr.ft.°F)} \; \times \; 20' \text{-} 0" \end{aligned}$

24 ft²


U_{w-installed} = 0.139 Btu/(hr.ft².°F)


WINDOW CALCULATIONS: Thermal Bridges

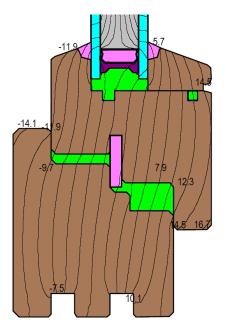
Two Thermal Bridges In Windows



Window Ψ : Spacer Value

Lower Ψ_{spacer} increases window performance and raises internal surface temperature

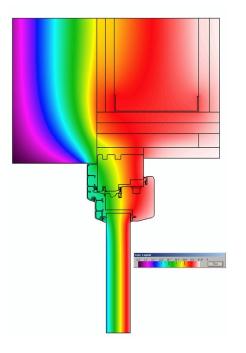
Calculation of the window R -value with:

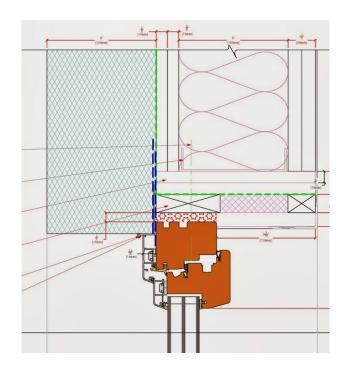

 $\begin{array}{ll} R_g &= 8.1 \ (hr.ft^2.\,^{o}F) / Btu \\ R_{f,bottom} &= 7.8 \ (hr.ft^2.\,^{o}F) / Btu \\ R_{f,top} &= 8.1 \ (hr.ft^2.\,^{o}F) / Btu \end{array}$

Source: PHI Berthold Kaufmann

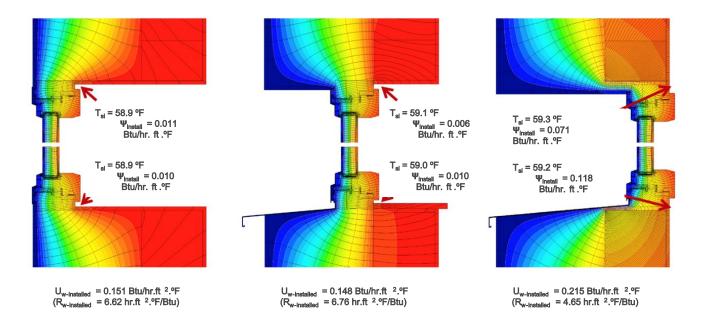
Glazing Bar Ψ Value: Condensation

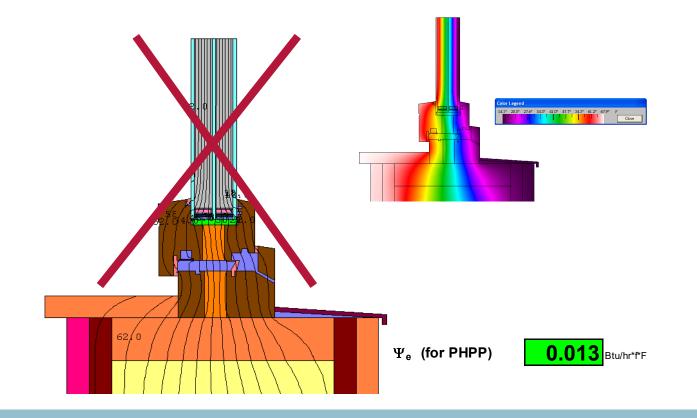
38.7 °F (at 5 °F outside temp.)



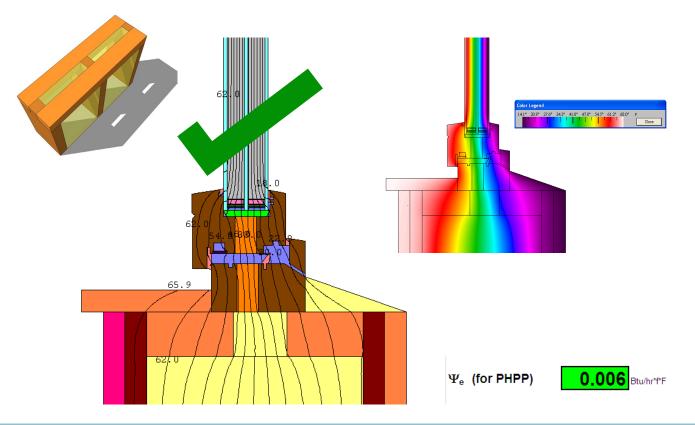


For a 300 ft² living room, 1/2 pint of condensation is produced easily.

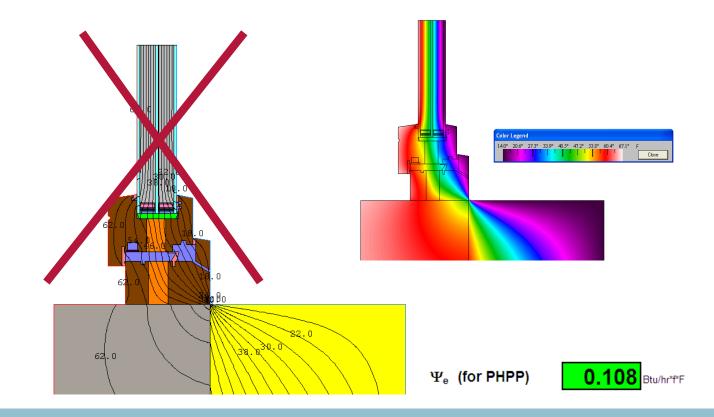

Window Ψ Value: Installation


Window Install Position

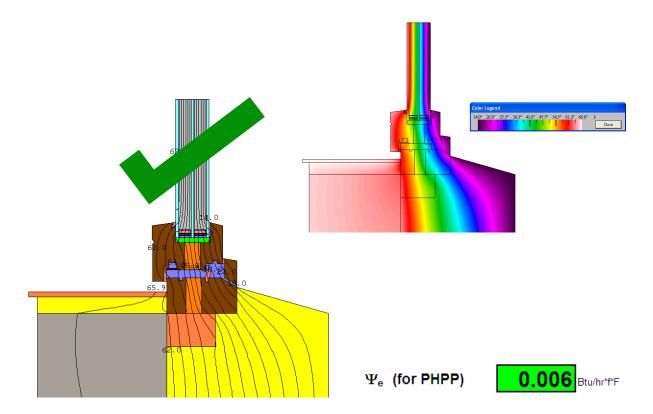
To determine the final energy balance impact of moving the installed position, the shading effect of the setback and the resultant solar gains must also be taken into account.



Solid Stud Wood Frame

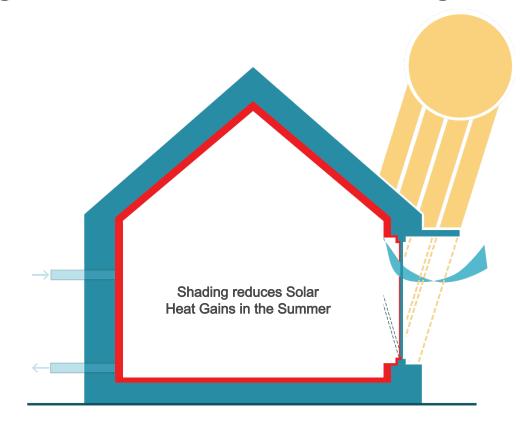


Double Stud Window Detail

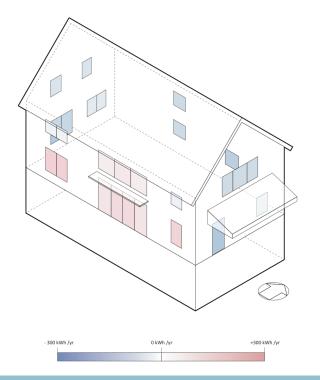


Window in Masonry Layer

Window External to Masonry Layer



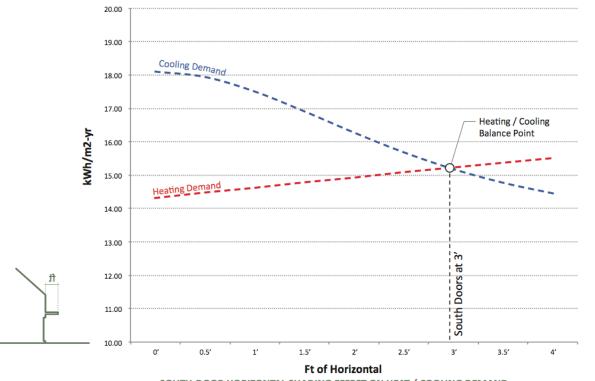
WINDOW CALCULATIONS: Solar Gains


Controlling Solar Gains With Shading



Seasonal Effect on Heat Gains

Winter Window Energy Balance



Summer Window Energy Balance

Seasonal Energy Balance: Shading Study

SOUTH-DOOR HORIZONTAL SHADING EFFECT ON HEAT / COOLING DEMAND

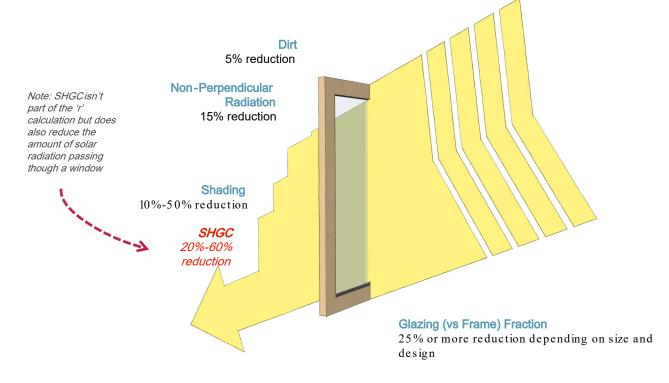
SOURCE:BLDGtyp, Butler Passive House, Lenox MA 2014

Calculating Solar Heat Gains

$Q_{S} = r \times SHGC \times A_{w} \times G_{N,E,S,W}$

r = Shading Factor × Dirt Factor × Non-Perp. Rad. Factor× Glazing Factor

Q_s (Solar Heat Gains)


Reduction Factor (unitless)

 Solar Heat Gain Coefficient (unitless)
 Gross area of the window (ft ²)
 Global Radiation (kBtu /ft².yr)

=kBtu /yr

Four Reduction Factors (r)

 $r = shading \times dirt \times non-perp.$ radiation \times glazing fraction

Example: Calculating Solar Gains

$Q_{S} = r \times SHGC \times A_{w} \times G_{N,E,S,W}$

EXAMPLE:

Calculate the Solar Gains for a south -facing window with the following characteristics:

NYC G _{south}	177 kBtu /ft ².yr	
Width	3'-6"	
Height	6'-0"	
SHGC	0.6	
Shading Factor	0.67	
Glazing Factor	0.76	
non-perpendicular radiation*	0.85	
Dirt*	0.95	

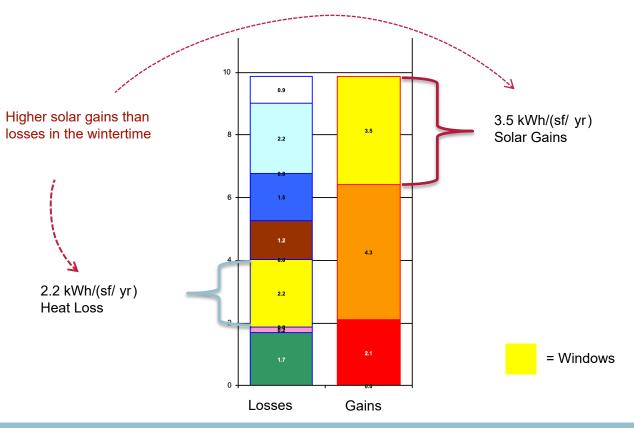
*reduction factor constants

Solution: Calculating Solar Gains

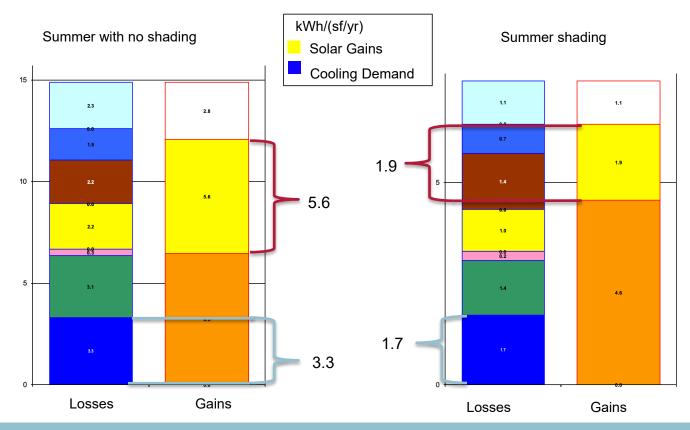
$$Q_{S} = r \times SHGC \times A_{w} \times G_{N,E,S,W}$$

Reminder: these two reduction factors are constants and pertain to dirt and non-perpendicular radiation respectively

 $Q_s = (0.67 \times 0.95 \times 0.85 \times 0.76) \times 0.6 \times 21 \text{ ft}^2 \times 177 \text{ kBtu / ft}^2.yr$ $Q_s = 0.41$ $\times 0.6 \times 21 \text{ ft}^2 \times 177 \text{ kBtu / ft}^2.yr$


 $Q_s = 917.0 \text{ kBtu / yr}$

CALCULATING THE WINDOW ENERGY BALANCE



Energy Balance Heating (Annual Method)

Energy Balance Cooling (Annual Method)

Window Energy Balance Calculation

 $Q_{H} = [Solar Gain (Q_{S}) \times \eta] - Transmission Loss (Q_{T})$

 $Q_{S} = r \times SHGC \times A_{w} \times G_{N,E,S,W}$ $Q_{T} = A \times (1/R) \times f_{t} \times G_{t}$

 $A = Area (ft^2)$

R = Reduction Factor (unitless)

SHGC = Solar Heat Gain Coefficient (unitless)

 $G_{N,E,S,W} = Globa_1 Radiation (kBtu/ft².yr)$

1/R = U-Value (Btu/hr.ft².°F)

f_t = Temp. Correction Factor (if needed)

 G_t = Yearly Heating Degree Hours (k. °F.hr/yr)

Calculating the Energy Balance

$Q_{S} = r \times SHGC \times A_{w} \times G_{N,E,S,W}$ $Q_{T} = A \times (1/R) \times f_{t} \times G_{t}$

EXAMPLE:

Calculate the overall yearly net energy balance for a south -facing window with the following characteristics:

NYC G _t	117kFh/yr	SHGC	0.6
Width	3'-6"	R _{Glass}	9.0
Height	6'-0"	R _{Frame}	6.5
Frame Width (Bottom)	5-1/2"	G _{south}	177 kBtu /ft ² .yr
Frame Width (Side +Top)	3"	Spacer Length	16.583'
Shading Factor	0.67	Ψ _{spacer}	0.06 Btu/hr.ft.°F
Glazing Factor	0.76	Ψ _{install}	-0.04 Btu/hr.ft.°F

Calculating Solar Gains

$Q_{S} = r \times SHGC \times A_{w} \times G_{N,E,S,W}$

Reminder: these two reduction factors are constants and pertain to dirt and non-perpendicular radiation respectively

 $\begin{aligned} \mathbf{Q_s} &= (\ 0.67 \times 0.95 \times 0.85 \times 0.76 \) \times \ 0.6 \ \times \ 21 \ \text{ft}^2 \ \times \ 177 \ \text{kBtu} \ /\text{ft}^2.\text{yr} \\ \mathbf{Q_s} &= 0.41 \ &\times \ 0.6 \ \times \ 21 \ \text{ft}^2 \ \times \ 177 \ \text{kBtu} \ /\text{ft}^2.\text{yr} \end{aligned}$

 $Q_s = 917.0 \text{ kBtu/yr}$

Calculating Transmission Losses

$Q_T = A \times (1/R) \times f_t \times G_t$

Q_T (Transmission Loss) = Area of the thermal envelope (ft ²) × 1/R-Value (*U-Value:* Btu/hr.ft².°F) × Temp. Correction Factor (if needed) × Yearly Heating Degree Hours (k. °F.hr/yr)

=kBtu /yr

Window U-Value

$U_{w-installed} =$

 $(U_g \times A_{glass}) + (U_f \times A_{frame}) + (\Psi_{spacer} \times L_{spacer}) + (\Psi_{installed} \times L_{installed})$

A window

$$\begin{split} U_{\text{w-installed}} &= 0.11 \; Btu/(hr.ft^2.^{\circ}F) \times 15.875 \; \text{ft}^2 \; + \; 0.154 \; Btu/(hr.ft^2.^{\circ}F) \times 5.125 \; \text{ft}^2 \\ &+ \; 0.06 \; Btu/(hr.ft.^{\circ}F) \times 16.583' \; + \; -0.04 \; Btu/(hr.ft.^{\circ}F) \times 19' \end{split}$$

 $21\,ft^2$

$$U_{w-installed} = 0.132 \text{ Btu/(hr.ft^2. °F)}$$

Calculating Transmission Losses

$Q_T = A \times (1/R) \times f_t \times G_t$

Transmission Loss (Q_T) = 21 ft² × 0.132 Btu/(hr.ft². °F) × 1.0 × 117 k°F.hr/yr Transmission Loss (Q_T) = 324.3 kBtu/yr

Calculating the Energy Balance

Solar Gain (Q_S) = 917.0 kBtu/yrTransmission Loss (Q_T) = 324.3 kBtu/yr

 $Q_{H} = 917.0 \text{ kBtu/yr} - 324.3 \text{ kBtu/yr}$ $Q_{H} = 592.7 \text{ kBtu/yr}$

Free heat provided by the windows

CALCULATING EFFECT OF SOLAR GAINS: Annual Cooling Demand

Sensible Cooling Demand: Solar Gains (QS)

NOTE: Use Summer Non - Perp (0.90) Use Summer Shading Factors

$Q_{S} = r \times SHGC \times A_{w} \times G_{N,E,S,W}$

Q_s (Solar Heat Gains) = Reduction Factor (unitless) × Solar Heat Gain Coefficient (unitless) × Gross area of the window (ft²) × Global Radiation (kBtu/ft².yr)

=kBtu /yr

Solar Loads in Winter and Summer

Orientation	Area	SHGC	Reduction factor	Radiation 1	Radiation 2	Ρ _T 1		P _T 2
of the area	ft"	(perp. radiation)	(see "Windows' worksheet)	BTU/hr.ft*	BTU/hr.ft*	BTU/hr		BTU/hr
North	0	0.00	0.40	7.9	or 4.8	= 0	or	0
East	72	0.35	0.52		or 6.3	= 251	or	84
South	168	0.64	0.46	36.5	or 7.9	= 1821	or	396
Vest	0	0.00	0.40	15.8	or 6.3	= 0	or	0
Horizontal	0	0.00	0.40	00.0	or 9.5	= 0	or	0
Solar heating power P _S					Total	= 2072	or	480

Heating season

Seeking to maximize solar gains to reduce heating load

Orientation	Area	SHGC	Reduction factor	Radiation 1	Radiation 2		P _T 1		P _T 2
of the area	ft"	(perp. radiation)	(see "Windows' worksheet)	BTU/hr.ft ^a	BTU/hr.ft*		BTU/hr		BTU/hr
North	0	0.00	0.40	27	or 17	=	0	or	0
East	72	0.35	0.60		or 55	=	1024	or	834
South	168	0.64	0.30	63	or 70	=	2069	ro	2275
₩est	0	0.00	0.40	65	or 55	=	0	or	0
Horizontal	0	0.00	0.40	103	or 92	=	0	or	0
Sum opaque areas		·		······			1306	or	1151
Solar load Ps					Total	=	4399	or	4260

Cooling season

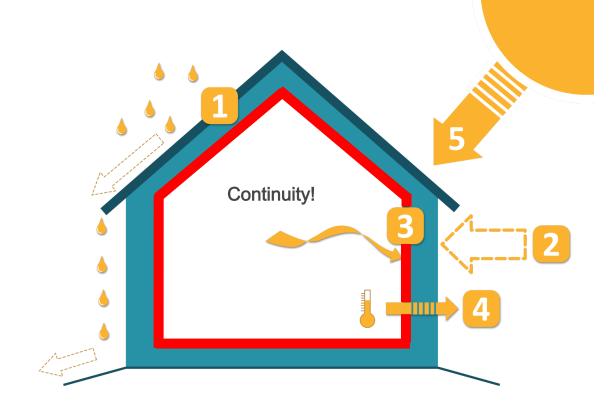
Seeking to minimize solar gains to reduce cooling load

Season Reduction Factors:

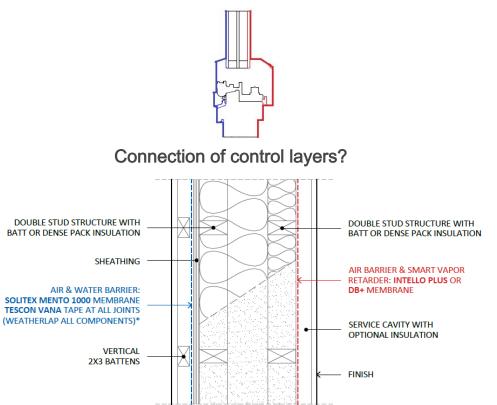
- 1. Reduction factor higher to the east in summer than in winter
- 2. Reduction factor lower to the south in summer than in winter sun angle.
- risk of overheating (due to low sun angle).
- reducing risk of overheating from south due to higher

Section 4: How to Install Passive House Windows

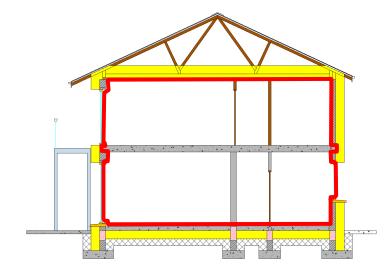
Maximizing the Performance of your windows



PASSIVE HOUSE WINDOW INSTALL BASICS



Goals of the Building Envelope



Control Layers

Airtightness: The "Red Line" Test

Airtightness: 0.6 ACH @ 50 Pa One continuous air -tight layer:

Continuous Insulation

INSTALLATION METHODS

Step One: Prepare the Opening

Airsealed buck joints

Grease/oil free

Swept clean

Improper Preparation

Tape is delaminating because it was applied to a dirty surface! Unacceptable install conditions. No way to guarantee an airtight seal.

Step 2: Install the Sill

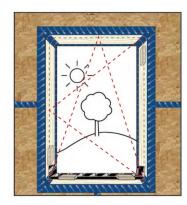
No metal sill pans!

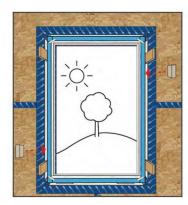
Non-conductive Sill

- Flexible membranes
- Flexible Tape
- Liquid Applied Flashing

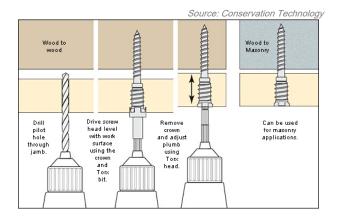
Connect to WRB

Back Damn





Step 3: Block, Shim, and Attach



Shim-Screw Installation

Clip Installation in a Double Stud Wall

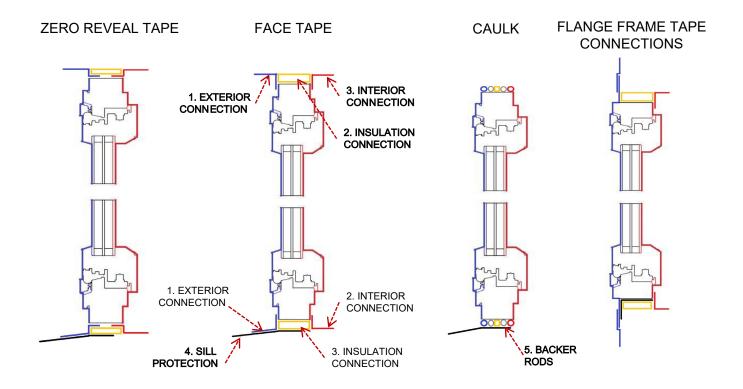
- Window positioned in outer stud to maximize solar gains and enable easy exterior over -insulation.
- Shims used for precise positioning.
- Spray foam insulation fills gaps on all sides (not for airtightness!)
- Metal fixing straps brought to the interior to avoid thermal bridge.
- Airtight tape to be placed externally.

Triple studs not ideal in terms of R-value of the wall – but needed in this case to support weight of adjacent door.

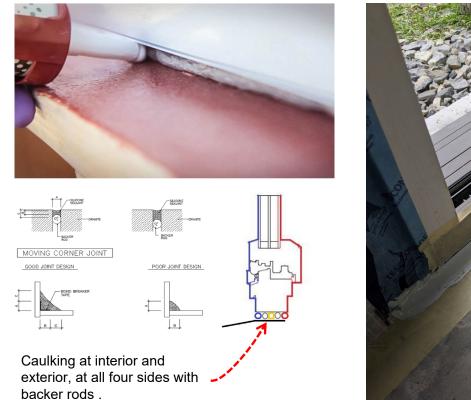
Level, Plumb, and in Position

Step 4: Insulate Around the Frame

Insulate Around and/or Over the Frame



Step 5: Connect to Airtight Layer



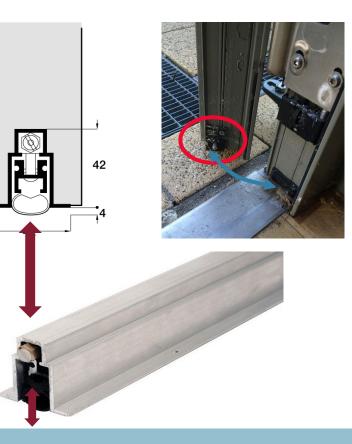
Type of Connection

Caulk Connections

Faced Tape Installation and Airtight Clip

Corner Taping

Zero Reveal Taping

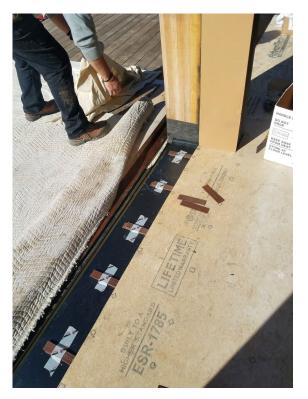


Airtight Seal at Door Sill

Delivery to Site



Delivery to Site


Rough Opening Preparation

Rough Opening Preparation

Preparing the Windows: Positioning and Cleaning

Preparing the Windows: Removing Operable Sash

Pre-taping and Planning

Installing the Window

Installing the Window: Level and Plumb

Securing the Threshold

Installing and Adjusting the Sash

Insect Screen

Shading

Shading

Finished Product

Finished Product

Finished Project

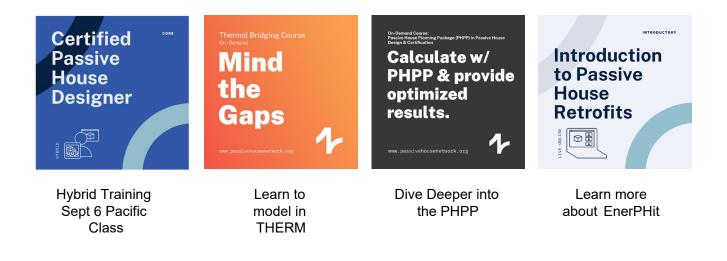
Coming Up... Continuing Education and Upcoming Events

Events

2023 Passive House Network Conference Save The Dates Share your ambitions for a better world.

Share your ambitions for a better wor Passive House is the platform.

Denver, Colorado | Online & In-Person


Sept 28 & Oct 4-6, 2023

Virtual (September 28 th) + In-person (October 4 -6th)

Passive House Rocky Mountains

Plus: PHN Presents, Symposiums, Event Recordings

Continuing Education

https://passivehousenetwork.org/education/

Training Survey

Your insights into this training will help us make this course better.

https://www.surveymonkey.com/r/V33BM5T

Thank You!

Education, Training & Exams

Membership & Sponsorship

Annual Conference

Events and General Inquiries

training@passivehousenetwork.org community@passivehousenetwork.org info@phnconference.org info@passivehousenetwork.org

Seize the power of Passive House

Additional Resources

- Top 6 Rookie Air Sealing Mistakes | Passive House Accelerator
- Document Search | buildingscience.com search for Air Barriers
- Berkeley Passive House | Berkely, California Passive House
 California
- Straightforward Air -Sealing Strategies Fine Homebuilding
- PG&E Air Sealing to Achieve Zero Net Energy
- Near Perfect Air Tightness Measured in Contemporary Home