

We will be starting soon!

Thanks for joining us

Home Electrification Planning Class 2: Panel Optimization

Josie Gaillard & Tom Kabat

August 29, 2023

HOME ELECTRIFICATION PLANNING SERIES

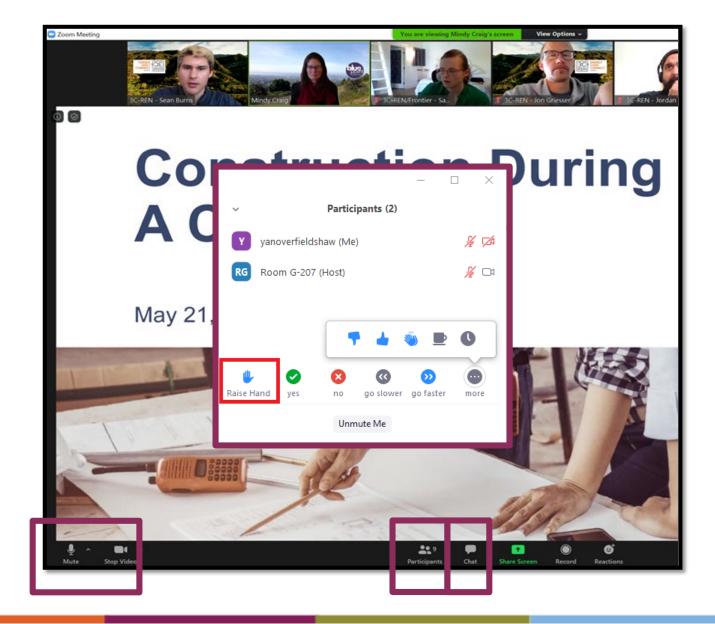
Learn how to develop customized home electrification plans for customers or your own home!

Home Electrification Planning Classes Aug 22 Class 1: Electrification Planning: Soup to Nuts

- What is an electrification plan
- Importance of electrification planning
- Methods for calculating heating load

Today Class 2: Electrical Panel Optimization

- How to calculate existing electrical load
- Incorporate planned electrification upgrades
- Optimize existing electrical panel capacity


Sept 5 Class 3: Developing an Electrification Plan

- Selecting proper type, sizing, and location for new equipment
- Essential components of an electrification plan
- Setting the homeowner and contractors up for success

Zoom Orientation

- Please be sure your full name is displayed
- Please mute upon joining
- Use "Chat" box to share questions or comments
- Under "Participant" select "Raise Hand" to share a question or comment verbally
- The session may be recorded and posted to 3C-REN's on-demand page.
 Feel free to ask questions via the chat and keep video off if you want to remain anonymous in the recording.

3C-REN: Tri-County Regional Energy Network

- Three counties working together to improve energy efficiency in the region
- Services for
 - Building Professionals: industry events, training, and energy code compliance support
 - Households: free and discounted home upgrades
- Funded by ratepayer dollars that 3C-REN returns to the region

QUICK REVIEW OF LAST WEEK'S MATERIAL

Problems of Electrifying WITHOUT a Plan

- Homeowner's 1st electrification projects use up too many panel amps
- Advised by contractor who is not thinking about whole-home electrification
- Worst offenders:
 - 50-amp car chargers
 - 50-amp HVAC systems

Problems of Electrifying WITHOUT a Plan

- Electric panel is poorly filled!
- Panel and service line need to be UPSIZED
- Utility gets involved
- Long wait times
- Could cost \$5,000 (overhead service line) and \$20,000 (underground)

Benefits of Electrifying WITH a Plan

- Helps avoid ~\$5,000+ electric panel upgrade
- Provides roadmap for homeowner
- Helps guide tradespeople
- Helps avoid unnecessary work and costly mistakes
- Facilitates right sizing equipment (vs. oversizing)
- Home more likely to be power efficient and grid-friendly

Panel optimization works:

- If house is <3000 sq ft and located in mild climate, 100 Amp panel is usually sufficient
- Caveat: Homes with 60 Amp panels or smaller should upsize panel and service line

		tric 100 An						
Device Volts	Device Amps		A A	np Panel			Device Amps	Device Volts
120	8	َنَّلُ Lights/Plug	15	15	Lights/Plug	; ; ; ; ;	8	120
120	8	لَيْنَ Lights/Plug	15	15	Lights/Plug	,÷Ż-	8	120
120	8	َنَيْ Lights/Plug	15	15	Lights/Plug	; `\	8	120
120	10	لمنتقب Garbage ط Disposal	20	20	Kitchen Outlets		15	120
120	7	Refrigerator	20	20	Kitchen Outlets	Ì	15	120
240	0	G Forced Air		20	Dishwashe	r ç	12	120
240	3	Unit Unit	5	20	Clothes Washer	Ö	15	120
240	20	Heat Pump HVAC	30	20	Hybrid Hea Pump Drye	nt III r	14	240
240	20	ళ∰ EV Charger	25	50	Range (cooktop +oven)		40	240
240	16	5 Solar Input	20	20	Heat Pump Water Heater		12	240
Пно	ouse square f	footage = 2000		Тс	otal Counte	d Panel	Amps = 9	96.6
4 occupants EV charging Located in C Some insula	up to 19 miles/hr California climate z	one 3 (SF Peninsula)	 4-burn 7.4 cu. A 20-a (Many 3) 	er induction o foot hybrid h mp circuit will .8 kW inverters	Imp water heater r standard electr eat pump dryer I support a 3.8 k can support roughly depending on inver	ic range N inverter. / a) desi	agram creation a gn by Josie Gailla and Courtney Be

Components of an Electrification Plan

- 1. Recommended equipment list
- Electrical load calculations per NEC 220.83(B) or 220.87
- 3. Wiring plan (optional but helpful)
- 4. Project list for contractors with photos of existing equipment and locations

Note:

- Homeowners can do their own or get help from an expert
- Plan takes expert ~30 minutes, homeowner ~3 hours

Electrification Plan

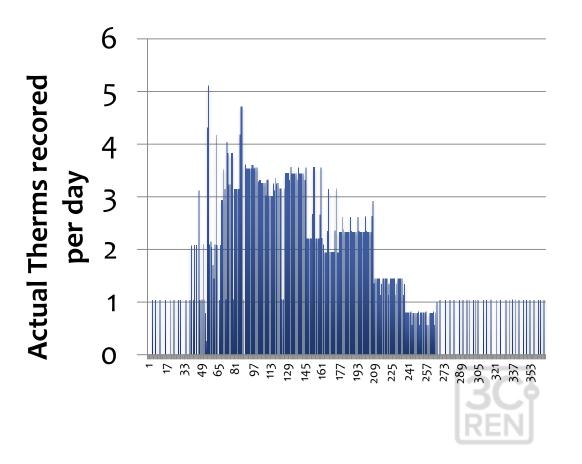
Equipment List								
Appliance	Image	Model Number	Retail Price	Туре	Volts	Nameplate Amps	Breaker Size	Notes
Frigidaire gallery 30" front control induction range with air fry		FGIH3047VF	\$1299	Kitchen	240	42	50	
Whirlpool 7.4 cu ft hybrid heat pump dryer	\bigcirc	WHD560CHW	\$1400	Laundry	240	14	30	
Mitsubishi 3-ton centrally ducted heat pump HVAC system	0	SVZ- KP36NA/SUZ- KA36NA2	\$4800	HVAC Heating	240	17	20	
Rheem 15-amp 65-gallon heat pump water heater		PROPH65 T2 RH375-15	\$2215	Water Heating	240	12	15	
Wallbox Pulsar EV charger w/ adjustable current (with circuit pausing)	90	Pulsar	\$700	EV Charger	240	16	20	

First Step: Gather Data

- 1. Utility data showing home's current energy needs
 - Best to gather before home visit
- 2. Homeowner preferences
- 3. Home visit observations, measurements and photos

Home Visit Data: Main Panel & Subpanels

- + Shut-off breaker capacity of main panel
- Open breaker spaces in main panel and subpanels
- Busbar capacity of main panel and subpanels
- + Feeder breaker capacity of subpanels



Next Step: HVAC Sizing Peak Day Gas Usage Method

Method:

- Pick heat pump size based on peak (coldest) day needs
- + 5.1 therms 0.4 (non heating) = 4.7 therms
- 4.7 therms x 80% x 100,000 BTU/therm = 376,000 BTUs of heat/peak day
- 376,000 BTU/12,000 BTUs per ton-hour =
 31.3 ton-hours of heat needed on peak day
- 31.3 ton-hours / 13 hours of full load
 operation on peak day = 2.4 tons needed
- 2.4 x (1- 20% duct heat loss and leakage) =
 1.9 tons needed if it was ductless

NEC 220.83 (B) AND 220.87

Electricity Basics

Watts = Amps x Volts (Power = Current x Pressure)

Example: 60 watts = _?_ amps x 120 volts 60 watts = 0.5 amps x 120 volts

Amps = Watts / Volts 0.5 A = 60 W / 120 V

Load Calculation: Step #1 Sum Existing Electric Loads

Total floor area: Main service capa No. of gas appliar	-	-	0 sq ft amps	
Image: Solar Ar Source Ar Source Electric Dryer	Induction	Heat Pump	Electric	Electric
	Cooktop	Water Heater	Vehicle	Panel

Home A

Load Type	Amps	Volts	Watts
Fire Kitchen Circuit	12.5	X 120	= 1500
Kitchen Circuit	12.5	X 120	= 1500
Daundry Circuit	12.5	X 120	= 1500
Refrigerator	10	X 120	= 1200
Dishwasher	10	X 120	= 1200
Garbage Disposal	5	X 120	= 600
۔ Lights + Plugs	(3 watts /	sq foot)	= 4500

Subtotal = 12,000

Here we are using NEC code section: 220.83 (B)

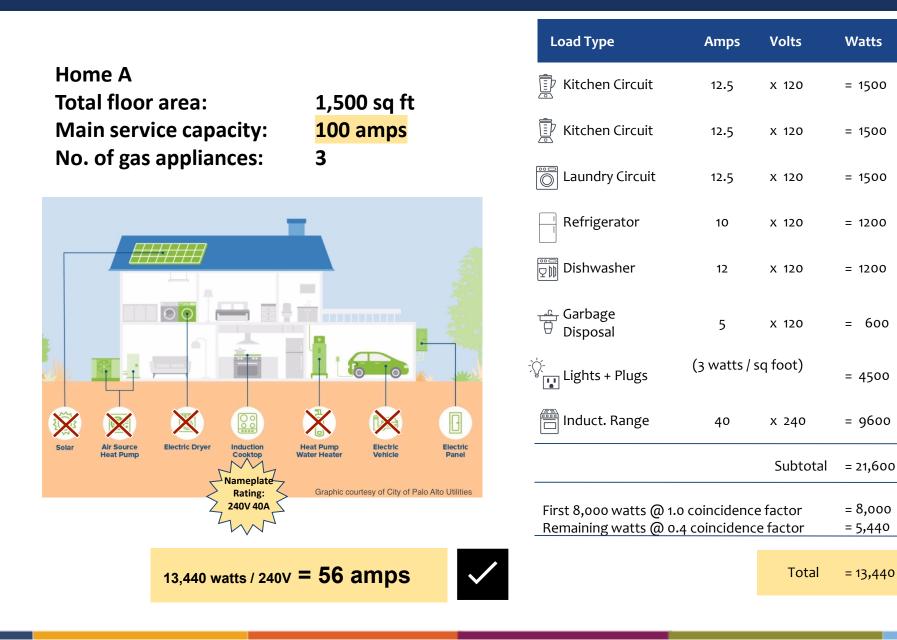
Load Calculation: Step #2 Add New Electric Load, an Induction Range

Home A Total floor area: Main service capacity: No. of gas appliances:	1,500 sq ft 100 amps 3	
Solar Al'Source Al'Source Electric Dryer Bietric Dryer Induction Nameplate Rating: Z40V 40A X40V	Heat Pump Water Heater Graphic courtesy of City of Park	Electric Panel

Load Type	Amps	Volts	Watts
Firchen Circuit	12.5	X 120	= 1500
E Kitchen Circuit	12.5	X 120	= 1500
Caundry Circuit	12.5	X 120	= 1500
Refrigerator	10	X 120	= 1200
Dishwasher	10	X 120	= 1200
Garbage ƏDisposal	5	X 120	= 600
-نُبُ- Lights + Plugs	(3 watts / sq foot)		= 4500
Induct. Range	40	x 240	= 9600
		Subtotal	= 21,600

Here we are using NEC code section: 220.83 (B)

Load Calculation: Step #3 Apply Coincidence Factors


Home A Total floor area: Main service capacity: No. of gas appliances:	1,500 sq ft 100 amps 3
	Image: selection of the se

Load Type	Amps	Volts	Watts
E Kitchen Circuit	12.5	X 120	= 1500
E Kitchen Circuit	12.5	X 120	= 1500
Laundry Circuit	12.5	X 120	= 1500
Refrigerator	10	X 120	= 1200
Dishwasher	10	X 120	= 1200
Garbage Disposal	5	x 120	= 600
Lights + Plugs	(3 watts / s	sq foot)	= 4500
🛅 Induct. Range	40	x 240	= 9600
		Subtotal	= 21,600
First 8,000 watts @ 1 Remaining watts @ 0			= 8,000 = 5,440
		Total	= 13,440

Here we are using NEC code section: 220.83 (B)

Load Calculation: Step #4 Calculate Load in Amps & Compare to Service Capacity

Load Calculation: Adding Electric HVAC, HPWH + EV Charging

Home B Total floor area: Main service capacity: No. of gas appliances:	2,000 sq ft 100 amps 2	
Solar Alr Source Heat Pump Nameplate Rating: 240V 17A	Heat Pump Water Heater Nameplate Rating: 240V 12A	

Load Type	Amps	Volts	Watts
E Kitchen Circuit	12.5	X 120	= 1500
E Kitchen Circuit	12.5	X 120	= 1500
Circuit	12.5	X 120	= 1500
Refrigerator	10	X 120	= 1200
Dishwasher	10	X 120	= 1200
🕂 Garbage 🖯 Disposal	5	X 120	= 600
َنَيْ - Lights + Plugs	(3 watts /	sq foot)	= 6000

Subtotal = 13,500

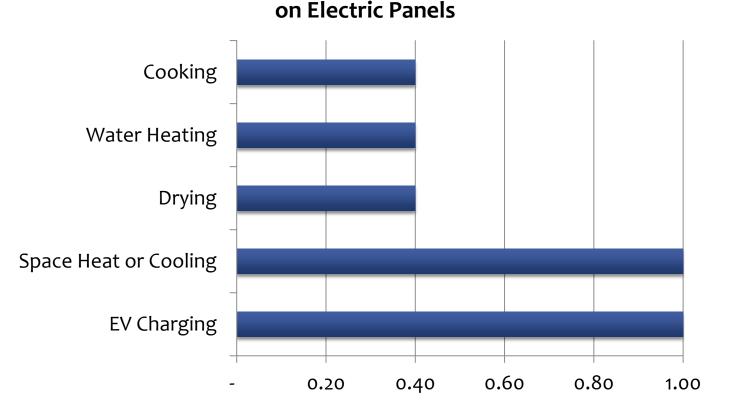
In this example, we use NEC code sections: 220.83 (B) + 625.40

Load Calculation: Adding Electric HVAC, HPWH + EV (NEC 625.40)

		Device Watts			
General light and plug 200	00 3 W/sq ft	6,000			
2 Kitchen counter + 1 Laundry 3	1500 W/c	4,500			
Refrigerator	Nameplate	1,200			
Dishwasher + Garbage Disposal	Nameplate	1,800			
15 Amp HPWH (12A/240V)	Nameplate	<u>2,880</u>			
	Subtotal	16,380			
			Coinc. Factor		Panel Watts
First 8,000 Watts		8,000 x	1.0	=	8,000
Remaining Watts		8,380 x	0.4	=	3,352
Heat Pump HVAC (17A/240V)	Nameplate	4,080 x	1.0	=	4,080
50 Amp EV Charger (40A/240V)	EVSE Setting	9,600 x	1.25	=	<u>12,000</u>
Total counted Watts					27,342
Divide Watts/240 Volts		No! Exceed	s panel cap	acit	y (114 Amp

Load Calculation: Adding Electric HVAC, HPWH + EV (NEC 625.40)

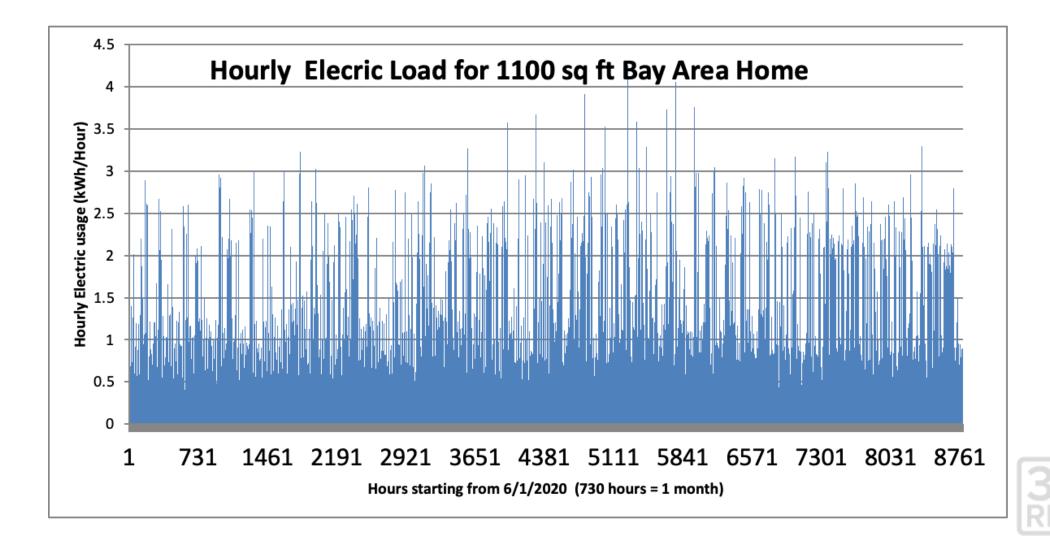
		Device Watts						
General light and plug 2000	3 W/sq ft	6,000						
2 Kitchen counter + 1 Laundry 3	1500 W/c	4,500						
Refrigerator	Nameplate	1,200						
Dishwasher + Garbage Disposal	Nameplate	1,800						
15 Amp HPWH (12A/240V)	Nameplate	<u>2,880</u>						
	Subtotal	16,380					_	
				Coinc. Factor		Panel Watts		
First 8,000 Watts		8,000	х	1.0	=	8,000		
Remaining Watts		8,380	х	0.4	=	3,352		
Heat Pump HVAC (17A/240V)	Nameplate	4,080	х	1.0	=	4,080		
30 Amp EV Charger (24A /240V)	EVSE Setting	5,760	х	1.25	=	<u>7,200</u>		ſ
Total counted Watts						22,692		l
Divide Watts/240 Volts		Good! Und	er	panel capa	acity	94	Amps)


Electrical Load Calculations

General Light and Plug Loads					Volt-Amps
Dwelling	2,350 sq. ft.	×	3 VA/sf	=	7,050
Kitchen Small Appliance Circuits	2 (min. 2)	×	1,500 VA each	=	3,000
Laundry (Washing Machine) Circuit	1 (min. 1)	×	1,500 VA each	=	1,500
Appliance Loads (nameplate value)	Volts		Amps		Volt-Amps
Built-in Microwave (not countertop model)	120	×	10	=	1,200
Dishwasher	120	×	15	=	1,800
Garbage Disposal	120	×	9.5	=	1,140
Refrigerator (on dedicated circuit)	120	×	5	=	600
Stove hood	120	×	1	=	120
NEW: Frigidaire gallery 30" front control induction range with air fry	240	×	42	=	10,080
NEW: Whirlpool 7.4 cu ft hybrid heat pump dryer	240	×	14	=	3,360
NEW: Rheem 15-amp 65-gallon heat pump water heater	240	×	12	=	2,880
General Loads Subtotal					32,730
First 8,000 VA @ 100%					8,000
Remaining VA @ 40%					9,892
General Loads Total					17,892
Other Loads (nameplate value)	Volts		Amps		Volt-Amps
NEW: Electric Vehicle Charging Load @ 125% (with circuit pausing)	240	×	0	=	0
Bathroom Heater #1 @ 100%	120	×	11	=	1,320
NEW: Mitsubishi 3-ton centrally ducted heat pump HVAC system @ 100%	240	×	17	=	4,080
Other Loads Total					5,400
Total Load (General + Other)					23,292 VA
Divide Load by 240 Volts					97 A
Rating of Existing Electrical Service					100 A
Panel Upgrade Required?					No

NEC Article 220.83(B) Coincidence Factors

- When using NEC 220.83(B), these are the electrification coincidence factors for adding equipment
- When using NEC 220.87, the factors are all 100% for adding equipment


Coincidence Factors of Electrification Loads

Load Calculation with 220.87

- Top down history approach
- Starts with peak usage interval last yr (15-min or 1-hr)
- Estimates remaining Feeder, Panel or Service space
- Peak Load * 1.25
- New devices get the remaining ampacity
- Good for adding 1-2 new devices per year
- Note: Can <u>not</u> be used if you have solar PV, battery or load management devices already

Determining How Much Electrification a Panel can Accommodate

• Multiply the 15-minute peak by 1.25 and subtract that from the panel's capacity to find the remaining kW nameplate space

• e.g. 15-minute peak = 10 kW x 1.25 = 12.5 kW

- Existing 100-amp panel is 24 kW (100 amps x 240 volts)
- 24 kW 12.5 kW = 11.5 kW nameplate space remaining
- You can add up to 11.5 kW of new attached or dedicated loads

Applying 220.87

Example:

Using 12 months of hourly loads

Max 1-hour peak	4.25	kW
1.25 x Annual Hourly highest load	5.31	kW Reserved for existing uses
Panel Capacity	100	Amps
Panel Capacity	24	kW
Available Panel Capacity 1st wave	18	kW Available for new uses
Available Panel Capacity 1st wave	75	Amps of 240 Volt nameplates or
Available Panel Capacity 1st wave	150	Amps of 120 Volt nameplates

30

- 220.82 (B) New Homes 10 kW @ 1.0
- 220.82 (C) New Homes HVAC @ 1.0 with some diversity for strip heat and 4+ separate zones
- 220.83 (A) Existing Homes 8 kW @1.0
- 220.83 (B) Existing Homes adding HVAC @ 1.0 coincidence factor
 - First 8 kW of other loads also counts at 1.0 coincidence factor
- 220.54 For multifamily and laundromat dryer fleets, not single-family homes
- 220.87 To use historic hourly usage to find the remaining panel capability
- 625.40 For applying the 1.25 combination long duration factor and coincidence factor for EVSE loads all the way up through the service line

7 ways to lower your panel amps

- 1. Pick high efficiency equipment (Heat Pump HSPF > 10)
- 2. Pick power efficient versions of: heat, water, dryer, cooking, EVSE e.g. HPs without backup resistance, low Amp HPWHs
- 3. Avoid oversizing (HP 2-3 tons for most homes, EVSE 20Amps = 39k miles)
- 4. Pick multifunction devices (e.g. combo washer/dryer, range)
- 5. Consider circuit sharing devices (e.g. alternate dryer & EV charger)
- 6. Consider circuit pausing devices (e.g. pauses charger or HPWH)
- 7. Decrease your loads (e.g. insulation and better shower heads)

Circuit Sharing Devices

- Examples:
 - NeoCharge, Dryer Buddy and SplitVolt let your dryer and EV charger share the existing dryer outlet (and circuit).
 - SimpleSwitch 240 is a hardwired circuit sharing device to let two 240V items share the same circuit and take turns.
- General:
 - They let two devices share, giving priority to one, and letting the other start when the priority device finishes.
- Code counting: Lets you not count the smaller of the two loads
- Bonus: Saves two poles in the electric panel by sharing one circuit

Circuit Pausing Devices

- Examples:
 - Thermelec DCC9 and SimpleSwitch 240M pause the car charger if the load on the electric panel goes over the 80% full level
 - Emporia Smart Charger with Emporia Vu also pasues the car charger if the load on the electric panel goes over the 80% full level
 - Lumin Smart Panel and Lumin Smart Breakers will do the same
- General: Circuit Pausing devices pause the controlled load when needed to keep panel load below a target level.
- Code counting: Lets you not count the controlled load

Load Calculation: All Electric

Home B Total floor area: Main service capacity: No. of gas appliances:	2,000 sq ft 100 amps 0
Solar Alr Source Heat Pump Electric Dryer Induction Cooktop Nameplate Nameplate Nameplate Rating: Rating: Rating:	Heat Pump Water Heater Nameplate Rating: Curry Rating: Alto Utilities
240V 17A 240V 14A 240V 40A	240V 12A 240V 40A

Load Type	Amps	Volts	Watts
Fire Kitchen Circuit	12.5	X 120	= 1500
E Kitchen Circuit	12.5	X 120	= 1500
Laundry Circuit	12.5	X 120	= 1500
Refrigerator	10	X 120	= 1200
Dishwasher	10	X 120	= 1200
न्द्र- Garbage 🖯 Disposal	5	X 120	= 600
-نَنْ- Lights + Plugs	(3 watts /	= 6000	

Subtotal = 13,500

In this example, we use NEC code sections: 220.83 (B) + 625.40

Load Calculation: All Electric

			Device Watts					
General light and plug	2000	3 W/sq ft	6,000					
2 Kitchen counter + 1 Laundry	3	1500 W/c	4,500					
Refrigerator		Nameplate	1,200					
Dishwasher + Garbage Disposal		Nameplate	1,800					
15 Amp HPWH (12A/240V)		Nameplate	2,880					
HP Dryer (14A/240V)		Nameplate	3,360					
Induction Range (40A/240V)		Nameplate	<u>9,600</u>					
		Subtotal	29.340					
					Coinc. Factor		Panel Watts	
First 8,000 Watts			8,000	х	1.0	=	8,000	
Remaining Watts			21,340	х	0.4	=	8,536	
Heat Pump HVAC (17A/240V)		Nameplate	4,080	х	1.0	=	4,080	
30 Amp EV Charger (24A/240V)		EVSE Setting	5,760	х	1.25	=	<u>7,200</u>	
Total counted Watts							27,816	
Divide Watts/240 Volts			No! Exceed	ds	panel capa	acit	y 116	Amps

3C

Load Calculation: All Electric + Circuit Pauser on EV Charger

									<u> </u>
			Device Watts						
General light and plug	2000	3 W/sq ft	6,000						
2 Kitchen counter + 1 Laundry	3	1500 W/c	4,500						
Refrigerator		Nameplate	1,200						
Dishwasher + Garbage Disposal		Nameplate	1,800						
15 Amp HPWH (12A/240V)		Nameplate	2,880						
HP Dryer (14A/240V)		Nameplate	3,360						
Induction Range (40A/240V)		Nameplate	<u>9,600</u>						
		Subtotal	29.340					_	
					Coinc. Factor		Panel Watts		
First 8,000 Watts			8,000	x	1.0	=	8,000		
Remaining Watts			21,340	x	0.4	=	8,536		
Heat Pump HVAC (17A/240V)		Nameplate	4,080	x	1.0	=	4,080		
30 Amp EV + PAUSER (0A/240V)		EVSE+Pauser	0	х	1.25	=	0		
Total counted Watts							20,616		
Divide Watts/240 Volts			Yes! Under panel capacity 86 Amps						

11 ways to free up physical panel space

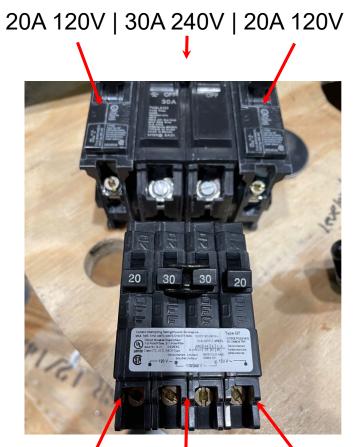
- **1. Pick multi-function appliances**
- 2. Free up furnace circuit
- 3. Choose shared circuit version 120V HPWH
- 4. Use tandem or slim breakers
- 5. Automatic circuit sharing devices (two appliances share one circuit)
- 6. Junction box (join two low-load circuits)
- 7. Square D breakers can hold 2 circuits
- 8. Pig Tail breaker can hold 2 circuits
- 9. Add subpanel for ~9 circuits
- **10.Line tap solar**
- 11.Use a meter collar (bypasses the main panel and connects to the meter)

Examples of multi-function devices

- Combined slide-in range has oven and cooktop on one circuit
- Combined (All in one) Washer/Dryer has both washing and drying performed by the same machine
- Combined Space heat pump and water heat pump provide both space heating and cooling on the same circuit
- Umbilical fed mini splits and ductless mini splits power both the outdoor machine and the indoor machine from the same circuit

Free up the Furnace circuit w/ umbilical-fed central heat pump or a ductless heat pump

- Umbilical fed mini splits and ductless mini splits power both the outdoor machine and the indoor machine from the same circuit.
 - Central Examples: Mitsubishi Fujitsu, Mr. Cool
 - Any ductless heat pump.
- This frees up the typical 120V 15 Amp furnace circuit to be used as a 120V HPWH circuit, or for other use


Tandem Breakers are Slim Breakers

• Fits two breakers on to one pole and one space

Comparing wide and slim breakers

20A 120V | 30A 240V | 20A 120V

Top set of 3 breakers is (left to right):

- 20A 120V 1 pole
- 30A 240V 2 poles
- 20A 120V 1 pole

Bottom breaker is also (left to right):

- 20A 120V 1 pole
- 30A 240V 2 poles
- 20A 120V 1 pole

Add a subpanel

Image Courtesy of wiringdoneright.com

 Subpanels create physical space for new circuits

ConnectDER: Connects meter + panel

- Meter Collars
- Similar to Sempra Renewable Energy Collar

Using a few 'tandem' or 'slim' breakers

Top left breaker is normal 1" 1 pole breaker

Top two breakers on right are 2 tandem breakers filling the same sized space

Middle right 2" wide breaker has two-pole middle section for a 240V circuit and two more slim single-pole breakers on the outside

Bottom right shows 2" wide 2-pole breaker for comparison

Examples of combining old under-loaded circuits

- Junction box
 - (combines two 15 amp circuits into one 15 amp wire to a 15A breaker)
 - (combines two 20 amp circuits into one 20 amp wire to a 20A breaker)
- Square D brand has breakers allowing two wires held in one jaw
- Can use a "Pig Tail" in the panel combining two wires into one wire fed by the same amperage breaker
- Can use a Sub Panel fed by one big breaker and a feeder wire.
 - The sub panel can feed up to ~10 circuits
 - Useful for replacing knob and tube wiring or for shortening the branch wire paths

Exciting NEW products for electrifiers

120V Washer/Dryer:

GE Profile 4.8 cu ft combo unit w/ <u>heat pump</u> dryer 11 amps / 120 volts

120V HP Water Heater: Rheem Proterra 120V Plug-in Hybrid Electric Heat Pump 4 amps / 120 volts

120V HP Water Heater:

AO Smith Voltex 120V Plug-in Hybrid Electric Heat Pump 10 amps / 120 volts

Equipment silver bullets

- 1. 120-volt heat pump water heaters or 240-volt 15-amp hybrid water heaters
- 2. Upsizing water heater and adding a mixing valve to accommodate slower recovery time
- 3. 17-amp inverter-driven heat pump HVAC systems that are not just power efficient and energy efficient but also extremely quiet
- 4. Centrally ducted heat pumps w/ air handlers on same circuit, or multizone ductless
- 5. Split heat pump water heaters for tight spaces (consider combo washer/dryer to make space)
- 6. Heat pump dryers or combo washer/dryers (single 120-volt machine that washes and dries)
- 7. Wallbox Pulsar EV charger with adjustable current (6 to 32 amps)
- 8. Circuit-sharing devices like Neocharge and SimpleSwitch
- 9. Circuit pausers like DCC9, SimpleSwitch 240M and EV Duty, Emporia Smart Charger
- 10. Smart electric panels like Span.io

Resources:

• Watt Diet Calculator (Redwood Energy):

https://redwoodenergy.net/watt-diet-calculator/

• Home Electrification Retrofit Guide (Redwood energy):

https://redwoodenergy.net/wp-content/uploads/2021/11/SF-Retrofit-Guide-2021-09-08.pdf

NEC Online

https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=70

• Main Panel Basics:

https://www.youtube.com/watch?v=UBERduCp3Wo

• ZeroCarbon-Home:

https://www.zerocarbon-home.com/

Societal Benefits of Panel Optimization

- Preserves workforce for more rapid electrification
 - Electricians, Utility line crews, Utility project planners, Distribution engineers
- Leaves more neighborhood space for electrification on distribution wires
- Keeps electric rates low by reducing and delaying transformer upsizing etc.
- Starts a virtuous cycle of rate reduction and electrification
- Long low duty cycles help support solar power usage
- Reduces use of fossil peaking plants

Questions?

Closing

- Coming to Your Inbox Soon!
 - Slides, Recording, & Survey Please Take It and Help Us Out!
- Upcoming Courses:
 - Home Electrification Planning Class 3: Developing and Electrification Plan (9/5)
 - Getting Past Heat Pump Objections (9/8)
 - Introduction to Passive House Retrofits (9/11)
 - Installing Heat Pumps: Lessons from the Field (9/13)

Thank you!

For more info: 3c-ren.org

For questions: info@3c-ren.org

TRI-COUNTY REGIONAL ENERGY NETWORK SAN LUIS OBISPO · SANTA BARBARA · VENTURA