

PASSIVE HOUSE CALIFORNIA

PassiveHouseCal.org

Thank You

TRI-COUNTY REGIONAL ENERGY NETWORKSAN LUIS OBISPO • SANTA BARBARA • VENTURA

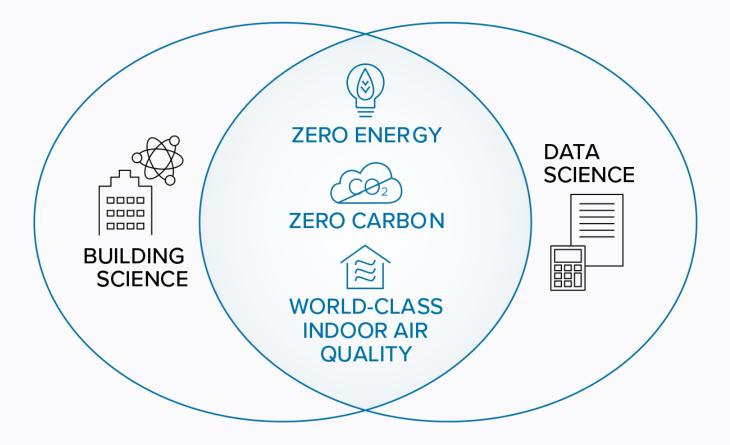
Building the World of High Performance

Supporters

FERGUS · GARBER · ARCHITECTS

Construction Progress
CPHER
Partner
Expert
Varema

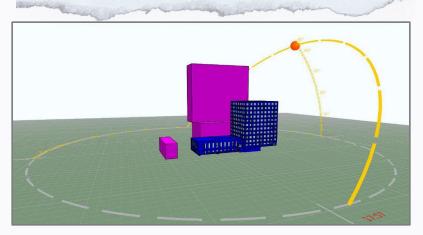
Simply the Best



BUILDING PERFORMANCE. CONNECTED.

An Affordable Path to Zero Anything...

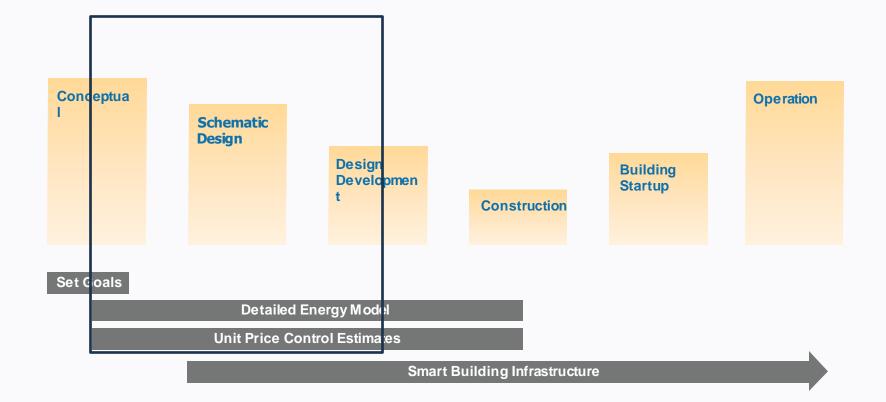
... requires both building science and data science


Metrics, Not Narratives

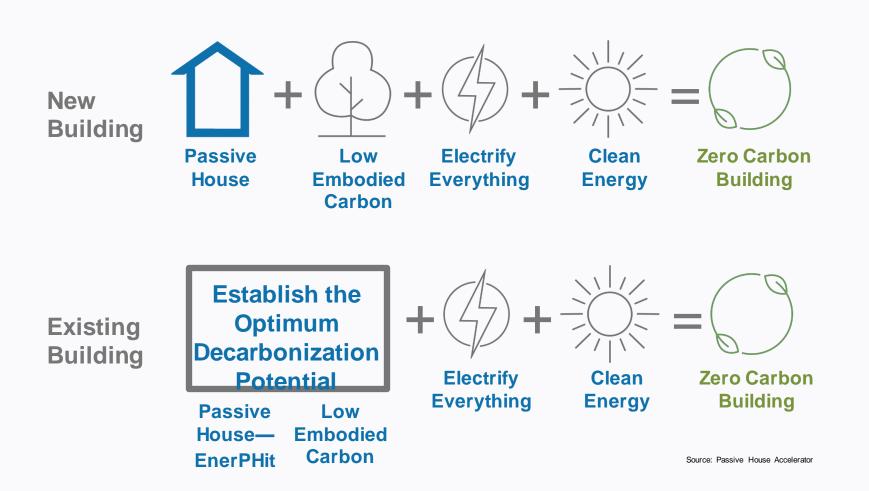
What will owners measure in operations? What defines success?

Change the Process

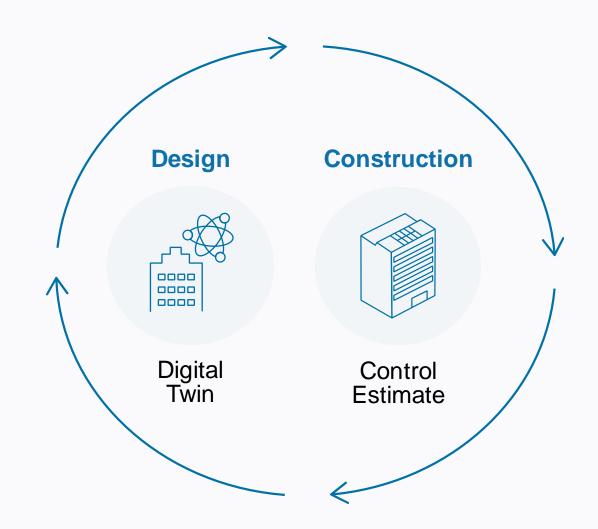
- Set metrics-based goals
- Align team to goals
- Open-source simulation to spin scenarios until we reach the highest performance at the lowest cost.


SUSTAINABILITY CERTIFICATION PROGRAM GOALS	Evidence-based goals
	[Select your programs]
ENERGY	
Site Energy Use Intensity (EUI)	14 kBtu/sf/yr
Gas v. Electrification Balance	
Renewables	Offset annual energy consumption to Zero Energy
Building Envelope Infiltration	0.05 cfm/gross sf shell @50Pa
INDOOR AIR QUALITY	
Particulate Matter 2.5 (PM2.5)	< 12 μg/m3
Total Volatile Organic Compound (TVOC)	< 0.4 mg/m3 (< 400 µg/m3)
Carbon Dioxide (CO2)	< 600 ppm
Temperature	Monitored
Humidity	Monitored
Carbon Monoxide (CO)	< 9 ppm
Ozone (O3)	< 51 ppb
Particulate Matter 10 (PM10)	< 50 µg/m3
Radon	< 0.148 Bq/L [4 pCi/L]
	in the lowest occupied level
Ventilation Rate:	PH Compliance

Zero Energy/Zero Carbon


Low/No cost solutions come during SD/DD using simulation

Natural Order of Decarbonization...


... must begin with efficiency

Technology reduces risk

Continuous modeling meets continuous estimating

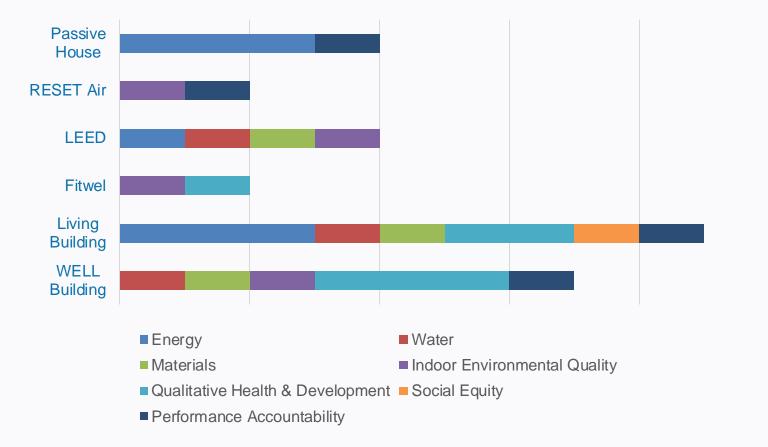
PHFA Multifamily Housing Around Philadelphia Region

250 200 150 100 50 0 fill = f

ph6

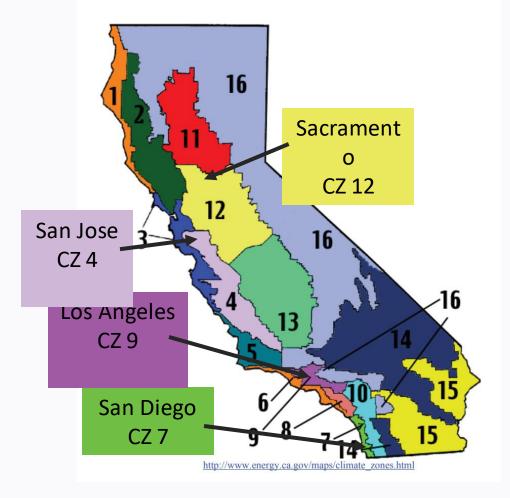
17 Buildings

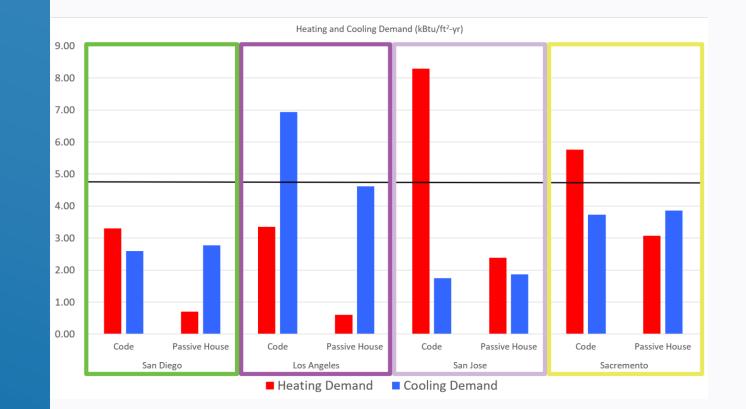
Not a Typical "Cost-P Paradigi

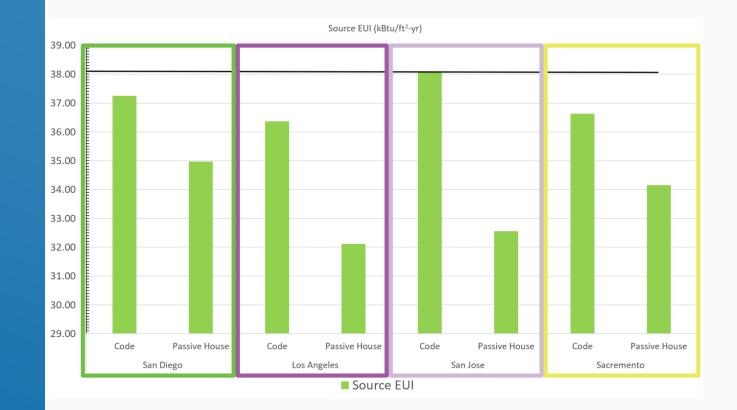

\$206/sf vs. \$208/sf averange

■ ph7 ■ ph8 ■ ph9 ■ ph10 ■ typ5 ■ typ6 ■ typ7

Source: Onion Flats

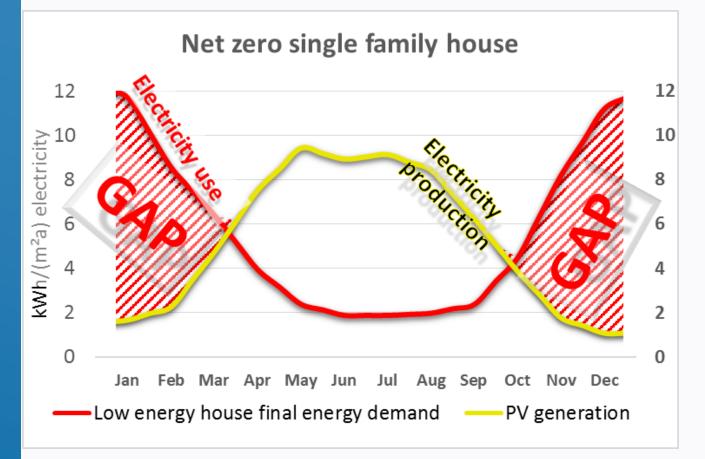

Start with foundational elements, then add...

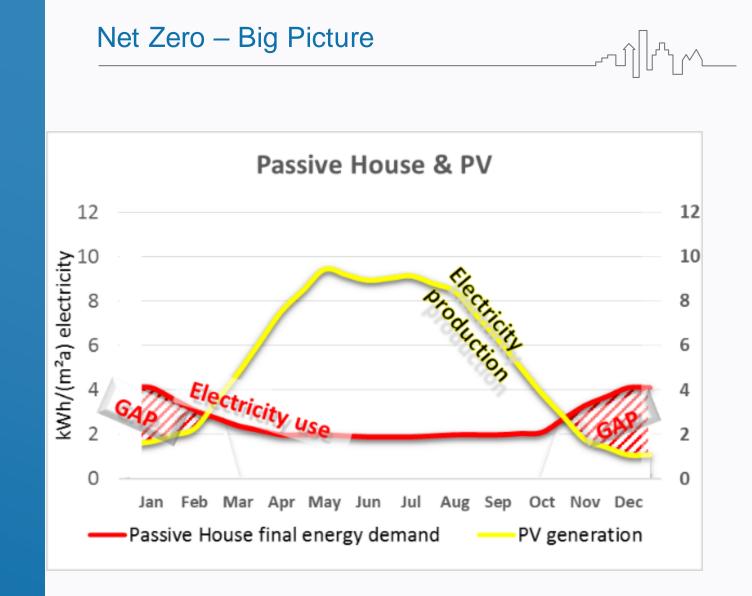

California Climate Zones


Heating and Cooling Demand

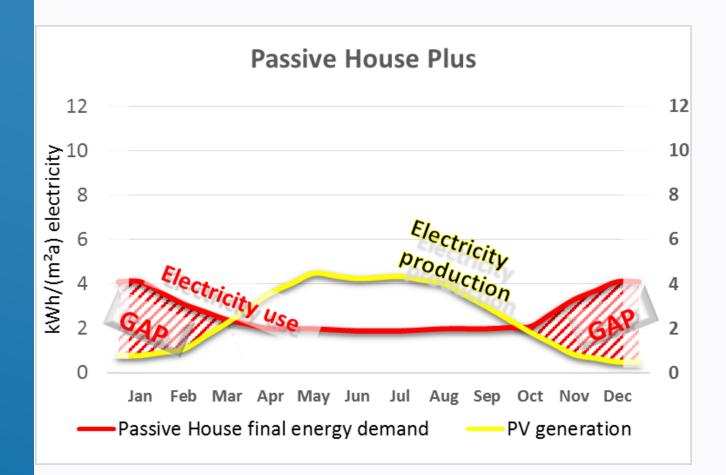


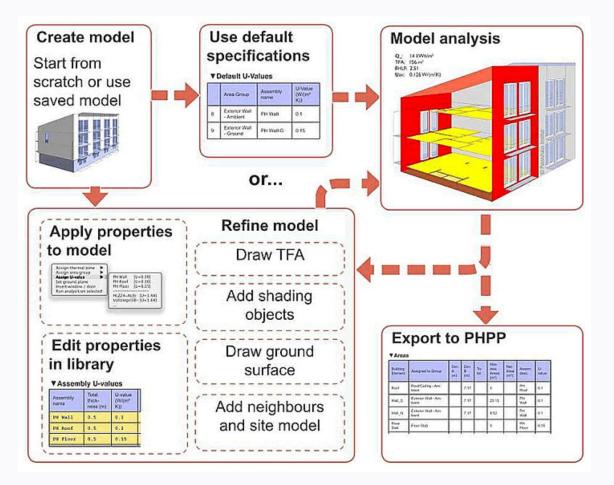
Source Energy Use Intensity (EUI)


Path to Net Zero Energy


ſ^` ſ^___

Net Zero – Big Picture

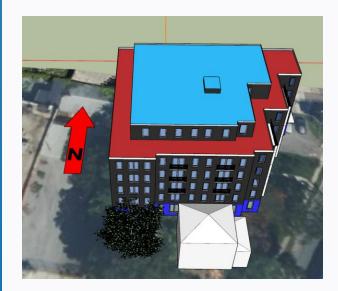




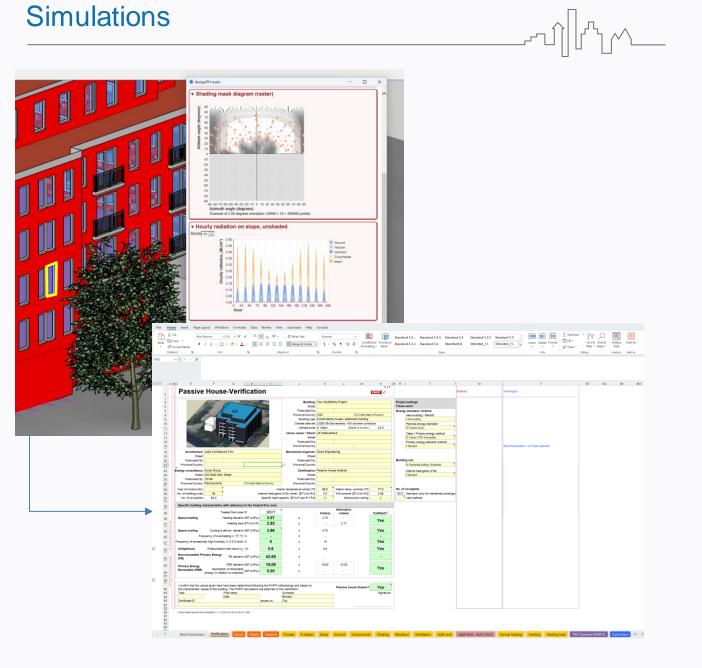
Standard

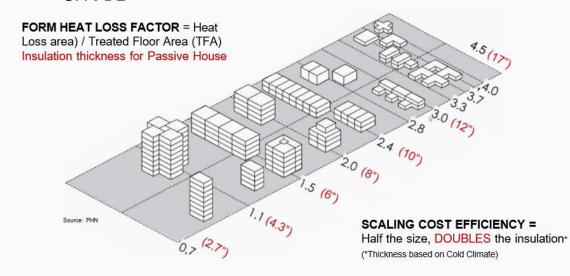
Multifamily

Simulations



Simulations


Standard Multifamily


Standard Multifamily

Building Data

- 49 Unit Residential
- 43,000 GSF (38,500 Treated Floor Area)
- All Electric
- Centralized Heating and Cooling with Heat Pump Systems
- Centralized Domestic Hot Water with a Heat Pump DHW and domestic water circulation loop
- Heat Loss Form Factor 1.1 REALLY GOOD

Model Inputs (1 of 3)

			TAE	BLE 170.	2-A EN	VELOPE	COMPO	ONENT	РАСКАС	GE – Mu	ltifamil	y Stand	ard Buil	ding De	sign				
		N 4 + ! f.						_			Climat	e Zone	_			_			
		Multifa	amily	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
			Roof Deck Insulation ^{1,2} With Air Space)	NR	NR	NR	R19	NR	NR	NR	R19	R19	R13	R19	R19	R19	R19	R19	R13
		Ceiling Insulation		R 38	R 38	R 30	R 38	R 30	R 30	R 30	R 38	R 38	R 38	R 38	R 38	R 38	R 38	R 38	R 38
	1Bi		Radiant Barrier	NR	REQ	REQ	NR	REQ	REQ	REQ	NR	NR	NR	NR	NR	NR	NR	NR	NR
	B .2(a)		Aged Solar Reflectance	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	0.63	NR	0.63	NR
	Option § 170.	Low-	Thermal Emittance	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	0.75	NR	0.75	NR
	Option B (meets § 170.2(a)1Bii)	sloped	Solar Reflectance Index (SRI)	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	75	NR	75	NR
	<u> </u>		Aged Solar Reflectance	NR	NR	NR	NR	NR	NR	NR	NR	NR	0.20	0.20	0.20	0.20	0.20	0.20	NR
		Steep-	Thermal Emittance	NR	NR	NR	NR	NR	NR	NR	NR	NR	0.75	0.75	0.75	0.75	0.75	0.75	NR
		sloped	Solar Reflectance Index (SRI)	NR	NR	NR	NR	NR	NR	NR	NR	NR	16	16	16	16	16	16	NR
		C	eiling Insulation	R 38	R 30	R 30	R 30	R 30	R 30	R 30	R 30	R 30	R 30	R 38	R 38	R 38	R 38	R 38	R 38
			Radiant Barrier	NR	REQ	REQ	REQ	REQ	REQ	REQ	REQ	REQ	REQ	REQ	REQ	REQ	REQ	REQ	NR
ling	1Bii		Aged Solar Reflectance	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	0.63	NR	0.63	NR
/Cei	C 2(a)	Low-	Thermal Emittance	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	0.75	NR	0.75	NR
Roof/Ceiling	Option C meets § 170.2(a)1Biii)	sloped	Solar Reflectance Index (SRI)	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	75	NR	75	NR
	ets		Aged Solar Reflectance	NR	NR	NR	NR	NR	NR	NR	NR	NR	0.20	0.20	0.20	0.20	0.20	0.20	NR
	(me	Steep-	Thermal Emittance	NR	NR	NR	NR	NR	NR	NR	NR	NR	0.75	0.75	0.75	0.75	0.75	0.75	NR
		sloped	Solar Reflectance Index (SRI)	NR	NR	NR	NR	NR	NR	NR	NR	NR	16	16	16	16	16	16	NR
		Meta	al Building U-factor	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041
		Wood Fra	med and Other U-factor	0.028	0.028	0.034	0.028	0.034	0.034	0.039	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028
			Aged Solar Reflectance	NR	NR	NR	NR	NR	NR	NR	NR	0.63	0.63	0.63	NR	0.63	0.63	0.63	NR
	oof	Low-	Thermal Emittance	NR	NR	NR	NR	NR	NR	NR	NR	0.75	0.75	0.75	NR	0.75	0.75	0.75	NR
	Option D Non Attic Roof)	sloped	Solar Reflectance Index (SRI)	NR	NR	NR	NR	NR	NR	NR	NR	75	75	75	NR	75	75	75	NR
	0 Non		Aged Solar Reflectance	NR	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	NR
	5	Steep-	Thermal Emittance	NR	0. 75	0. 75	0. 75	0. 75	0. 75	0. 75	0. 75	0. 75	0. 75	0.75	0.75	0.75	0.75	0.75	NR
	sloped	Solar Reflectance Index (SRI)	NR	16	16	16	16	16	16	16	16	16	16	16	16	16	16	NR	

Model Inputs (2 of 3)

	Metal-Building, any fire rating	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.057	0.057	0.057	0.057	0.057	0.057
	Framed (wood, metal) and other >1hr fire rating	0.059	0.059	0.059	0.059	0.059	0.065	0.065	0.059	0.059	0.059	0.051	0.059	0.059	0.051	0.051	0.051
Walls	Framed (wood, metal) and other, ≤1hr fire rating³	0.051	0.051	0.051	0.051	0.051	0.065	0.065	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051
		U 0.077	U 0.059														
	Mass Light ^{4,5}	R 13	R 17														
		K 15	K 15	113	N 13	K 15	K 15	N 15	K 15	K 13	K 13	11.12	K 15	K 15	K 15	K 15	K 17
	Mass Heavy	0.253	0.650	0.650	0.650	0.650	0.690	0.690	0.690	0.690	0.650	0.184	0.253	0.211	0.184	0.184	0.160
	Slab Perimeter, Three Habitable Stories or less	NR	U 0.58 R 7.0														
		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Floors/Soffits	Wood Framed	0.037 R 19															
Floo		U 0.092	U 0.092	U 0.269	U 0.269	U- 0.269	U 0.269	U 0.269	U 0.269	U 0.269	U 0.269	U 0.092	U 0.138	U 0.092	U 0.092	U 0.138	U 0.092
Floors/S	Raised Mass	R 8.0	R 8.0	R 0	R 0	R 0	R 0	R 0	R 0	R 0	R 0	R 8.0	R 4.0	R 8.0	R 8.0	R 4.0	R 8.0
	Other	0.048	0.039	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.039	0.071	0.071	0.039	0.039	0.039

Model Inputs (3 of 3)

Qualit	,	llation (QII) for buildings up abitable stories	Yes	Yes	Yes	Yes	Yes	Yes	NR	Yes								
		Maximum U-factor	0.38	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.38
	Curtain Wall/ Storefront	Maximum RSHGC, three or fewer habitable stories	NR	0.26	NR	0.26	NR	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.25	0.26	NR
		Maximum RSHGC, four or more habitable stories	0.35	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.25	0.26	0.25
		Minimum VT, four or more habitable stories	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46
	to three hab	Maximum U-factor	0.38	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.38
<u>S</u> Pe		Maximum RSHGC, three or less habitable stories	NR	0.24	NR	0.24	NR	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	NR
		Maximum RSHGC, four or more habitable stories	0.35	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24
Fene		Minimum VT, four or more habitable stories	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37
		Maximum U-factor	0.30	0.30	0.30	0.30	0.30	0.30	0.34	0.34	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
	All Other Fenestration Maximum	Maximum RSHGC, three or less habitable stories	NR	0.23	NR	0.23	NR	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	NR
		Maximum RSHGC, four or more habitable stories	0.35	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23
	Maximum	Window to Floor Ratio	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
	Maximum	Window to Wall Ratio	40%	40%	40%	40%	40%	40%	40%	40%	40%	40%	40%	40%	40%	40%	40%	40%
	Maximu	m Skylight Roof Ratio	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%
Se		Dwelling Unit Entry	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
ior Door	Maximum Wi	Common Use Area Entry Non-Swinging	0.50	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	0.50
Exter		Common Use Area Entry Swinging	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70

Mechanical Component Package

		TABLE 170.2	-K MEC	HANICA	L COM	PONEN	T PACK	AGE – I	Multifar			uilding	Design	I				
	Multifar	nily								Clima	te Zone							
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Unitary (serving one dwelling unit)	If Balanced HRV or ERV Ventilation System ¹ Sensible Recovery Efficiency		0.67	0.67	NR	NR	NR	NR	NR	NR	NR	NR	0.67	0.67	0.67	0.67	0.67	0.67
		HRV or ERV Fan Efficacy (W/cfm)	0.6	0.6	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.6	0.6	0.6	0.6	0.6	0.6
		Non-HRV or Non-ERV Fan Efficacy (W/cfm)	NR	NR	NR	0.4	0.4	0.4	0.4	0.4	0.4	0.4	NR	NR	NR	NR	NR	NR
	If Heat Pump, HSPF ² /HSPF2		MIN	MIN	MIN	MIN	MIN	MIN	MIN	MIN	MIN	MIN	MIN	MIN	MIN	MIN	MIN	MIN
	If Dual-Fuel Heat Pump, AFUE		MIN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	MIN
	Refrigerant Charge Verification or Fault Indicator Display		NR	REQ	NR	NR	NR	NR	NR	REQ	REQ	REQ	REQ	REQ	REQ	REQ	REQ	NR
	SEER/SEER2		MIN	MIN	MIN	MIN	MIN	MIN	MIN	MIN	MIN	MIN	MIN	MIN	MIN	MIN	MIN	MIN
Central (serving multiple dwelling	If Balanced Ventilation Systems ¹	Sensible Recovery Efficiency or Effectiveness	0.67	0.67	NR	NR	NR	NR	NR	NR	NR	NR	0.67	0.67	0.67	0.67	0.67	0.67
units)		Bypass Function	REQ	REQ	NR	NR	NR	NR	NR	NR	NR	NR	REQ	REQ	REQ	REQ	REQ	REC
Central System Air Handlers	Central Fan Integrated Ventilation System Fan Efficacy		REQ	REQ	REQ	REQ	REQ	REQ	REQ	REQ	REQ	REQ	REQ	REQ	REQ	REQ	REQ	REC
Duct Insulation	Ducts in Unconditioned Space		R-8	R-8	R-6	R-8	R-6	R-6	R-6	R-8	R-8	R-8	R-8	R-8	R-8	R-8	R-8	R-8
Water Heating	All Buildings								System S	hall mee	et Section	170.2(d)						

Passive House "Upgrades"

San Jose – Improvements needed to achieve Passive House Performance:

- □ Improved windows U-0.28 / SHGC 0.23
- 75% Heat Recovery (PH Minimum)
- 0.6 ACH50 @50 Pa

<u>San Diego – Improvements needed to achieve Passive House Performance:</u>

- 75% Heat Recovery (PH Minimum)
- 0.6 ACH50 @50 Pa

Los Angeles – Improvements needed to achieve Passive House Performance:

- Improved windows U-0.31/SHGC 0.23
- Exterior Shading Devices
- 75% Heat Recovery (PH Minimum)
- 0.6 ACH50 @50 Pa

Sacramento – Improvements needed to achieve Passive House Performance:

- □ Improved windows U-0.27 / SHGC 0.23
- □ 80% Heat Recovery
- 0.6 ACH50 @50 Pa

Summary

Energy – In every California climate tested, Passive House squeezes out additional consumption.

Renewables – the path to zero is easier and cheaper with Passive House certification.

Thermal Comfort -- Passive House is also a comfort standard.

Balanced Ventilation

- Indoor Air Quality
- Odor Control
- Occupant Comfort

Air Tightness

- Long term building assembly durability
- Should not cost more, it is mainly craftsmanship
- Systems work better
- Consistent temperatures
- Dramatically improved acoustics

It Takes a Village to Decarbonize:

How CEDA aligns with Passive House Initiatives

September 12, 2023

Business Confidential - Willdan

WHAT IS CEDA?

NEW!

The California Energy Design Assistance (CEDA) program promotes the electrification and decarbonization of new building construction or major renovation. CEDA works in collaboration with project teams to reduce energy demand, consumption, and carbon emissions.

The CEDA Program partners with the PG&E Code Readiness (CR) Team to support code advocacy initiatives through the collection of new construction project data to evolve future code cycles and support the long-term sustainability goals of California.

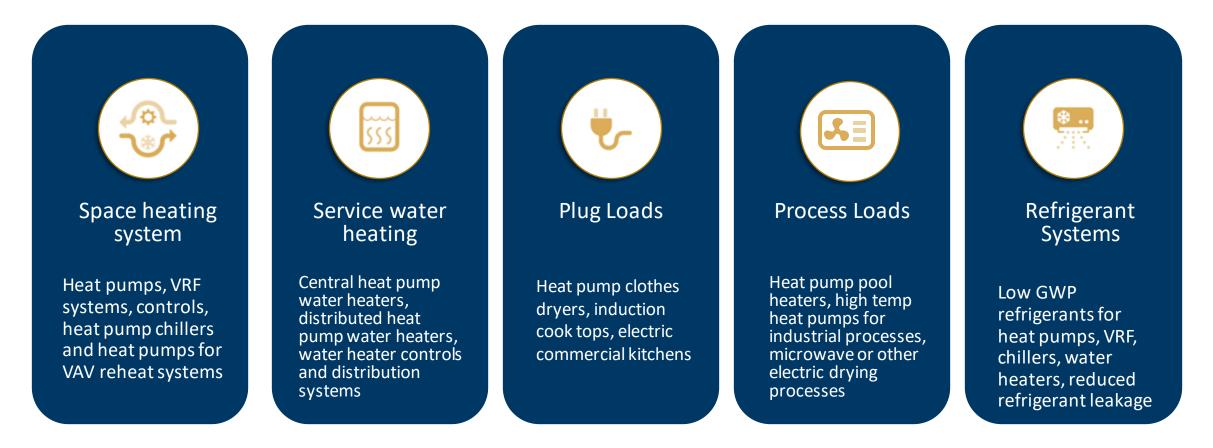
WHY COLLABORATE WITH CEDA?

- Be eligible for measure incentives and a design team stipend
- Participate in a low-commitment program that helps confirm your energy model and add new ideas
- Demonstrate commitment to high-performance building practices and design

ENERGY MODELING INCENTIVES

Design team incentives

Decarbonization measures incentives


Incentives to encourage Passive House modeling and design teams to participate in the collection the documentation and data and submit to CEDA

Examples of high-performance measure types to help your teams evaluate decarbonization opportunities and available incentives

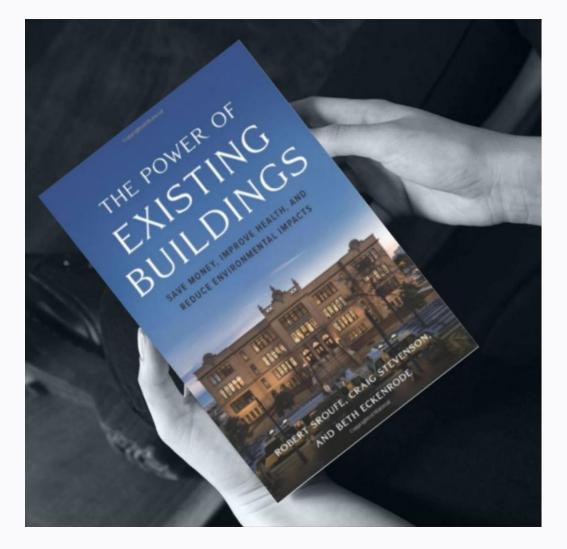
MEASURE INCENTIVES

CEDA offers incentives for participating in project discovery meetings and Design Team led data collection.

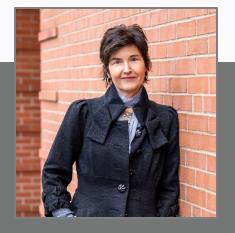
Additional incentives reward buildings of the future that implement high performance measures and electrification.

Incentives are also available for the installation of traditional above code minimum energy efficiency measures

Inducement Process:



Business Confidential - Willdan


Design and retrofit the highest performing buildings at the lowest possible cost

Our vision

Theory Into Practice

AUROS Group

Beth Eckenrode

412-506-6777 beth.eckenrode@aurosgroup.com

Q&A

AUROS Group Matt Bowers 412-506-6777 Matthew.bowers@aurosgroup.com

- For sharing information about the CEDA Program
- Other PH Multifamily Programs of potential interest
 - Fannie Mae Green Building Loans
 - CEC's Build Program
 - CA Energy Smart Homes
 - Multifamily Energy Savings Program (MESP)
 - Sacramento Municipal Utility (SMUD) Program
 - Southern California Edison (SCE) Multifamily Resources
- Inflation Reduction Act possibilities

The landmark Inflation Reduction Act contains \$4.5 billion in rebates that will reduce the cost of building affordable all-electric, multi-family Passive House buildings, as well as tax credits that can be worth as much as \$5,000 per unit.

Links in the Chat

Two Documents from Passive House Network

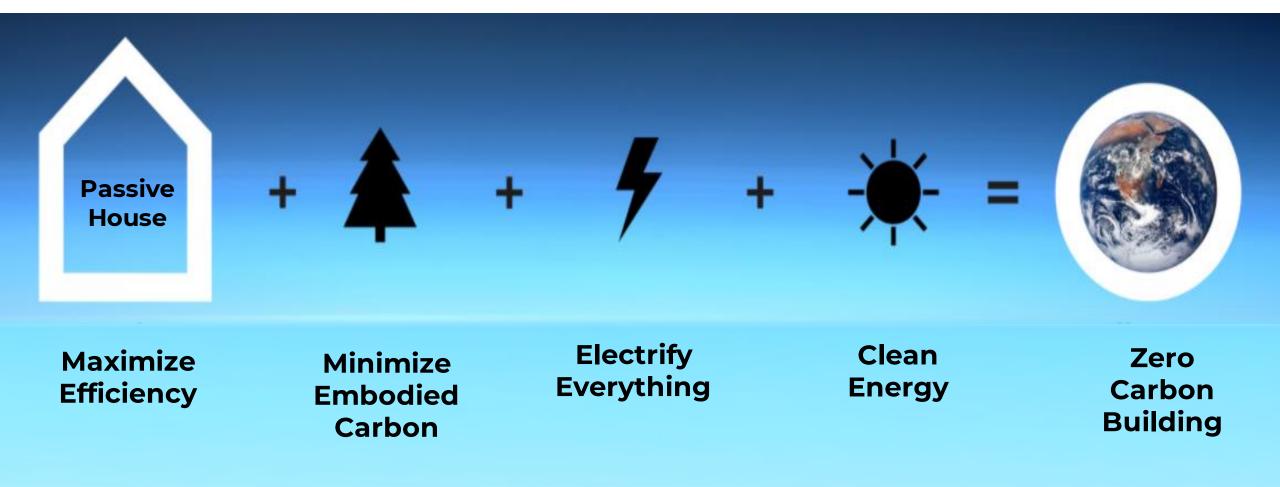
CALIFORNIA PH MULTIFAMILY RESOURCES: List (with links) of Subsidy Programs that may be used for Passive House Multifamily Buildings in California

Safe at Home:

How all-electric, multi-family Passive House buildings deliver comfortable, cost-effective climate resilience

Plus: We will soon email attendees a link to information and registration for an upcoming webinar on **Optimizing Decarbonization Potential in Retrofitting Multifamily Buildings**

Thank you For your Time and Attention


P A S S I V E H O U S E C A L I F O R N I A

TRI-COUNTY REGIONAL ENERGY NETWORK SAN LUIS OBISPO • SANTA BARBARA • VENTURA

PassiveHouseCal.org Info@passivehousecal.org For more Info: 3c-ren.org For Questions: info@3c-ren.org

The Building Blocks of Decarbonization

For the People – For the Planet

The Question is not Why — It is WHY NOT