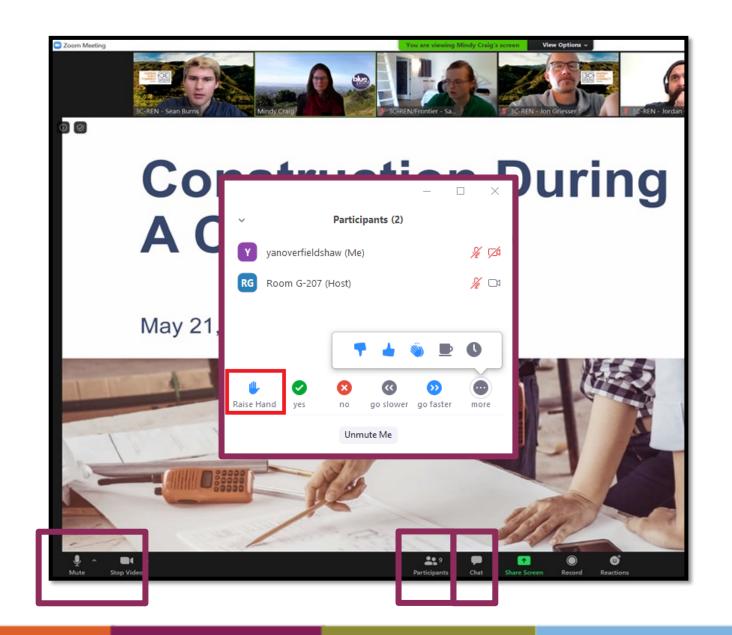


We will be starting soon!

Thanks for joining us

Practical Ways to Address Embodied Carbon

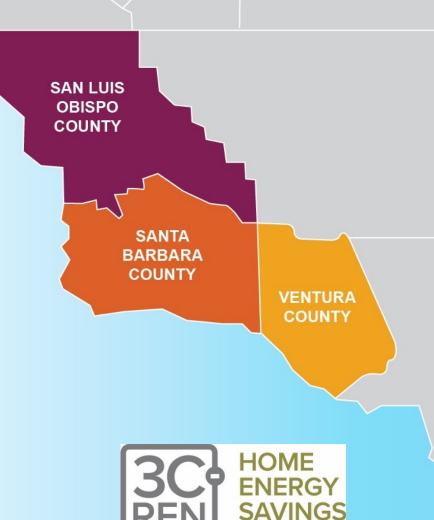
Michelle Zimney, LEED AP BD+C, LFA, CPHC, In Balance Green Consulting


Tatiana Soglin, LEED AP BD+C, GreenPoint Rated Advisor, In Balance Green Consulting

February 20, 2024

Zoom Orientation

- Please be sure your full name is displayed
- Please mute upon joining
- Use "Chat" box to share questions or comments
- Under "Participant" select "Raise Hand" to share a question or comment verbally
- The session may be recorded and posted to 3C-REN's on-demand page.
 Feel free to ask questions via the chat and keep video off if you want to remain anonymous in the recording.



3C-REN: Tri-County Regional Energy Network

- Three counties working together to improve energy efficiency in the region
- Services for
 - Building Professionals: industry events, training, and energy code compliance support
 - Households: free and discounted home upgrades
- Funded by ratepayer dollars that 3C-REN returns to the region

- Serves all building professionals
- Three services
 - Energy Code Coach
 - Training and Support
 - Regional Forums
- Makes the Energy Code easy to follow

Energy Code Coach: 3c-ren.org/codes 805.781.1201

Event Registration: **3c-ren.org/events**

- Serves current and prospective building professionals
- Expert instruction:
 - Technical skills
 - Soft skills
- Helps workers to thrive in an evolving industry

Event Registration: **3c-ren.org/events**

Multifamily (5+ units)

- No cost technical assistance
- Rebates up to \$750/apartment plus additional rebates for specialty measures like heat pumps

Single Family (up to 4 units)

- Sign up to participate!
- Get paid for the metered energy savings of your customers

Enrollment: 3C-REN.org/contractor-participation

Practical Ways to Address Embodied Carbon

February 20, 2024

In This Presentation

- Operating vs Embodied Carbon and other terms
- Why Care about Embodied Carbon?
- Embodied Carbon in the Construction Process Understanding Relative Impacts
- Practical steps (and shortcuts) for Reducing EC
- 3 Methods for CALGreen Compliance
- Storing Carbon into the Future

Differentiating Types of Carbon

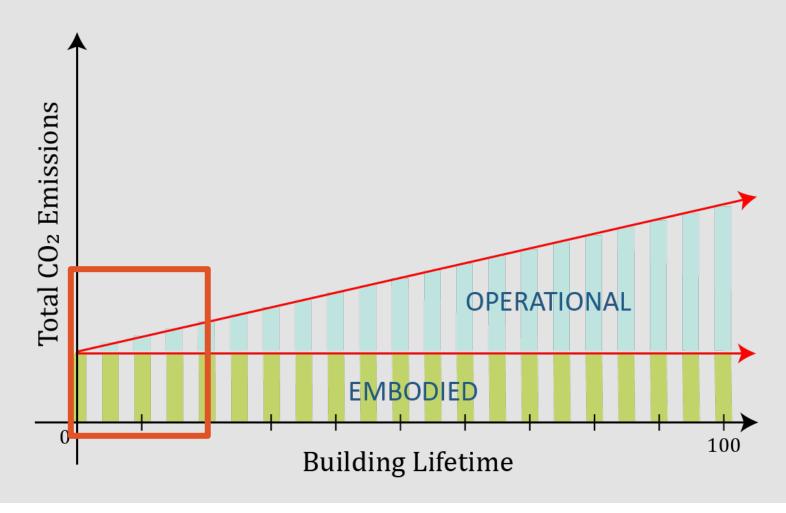
- Embodied carbon (EC) refers to the greenhouse gas emissions arising from the manufacturing, transportation, installation, maintenance, and disposal of building materials.
- Kg CO2e is often used as proxy measure for embodied carbon (valid across CO2, methane, etc.)

 Operational carbon refers to the greenhouse gas emissions due to building energy consumption.

Source: https://carbonleadershipforum.org/embodied-carbon-101/

Other Terms

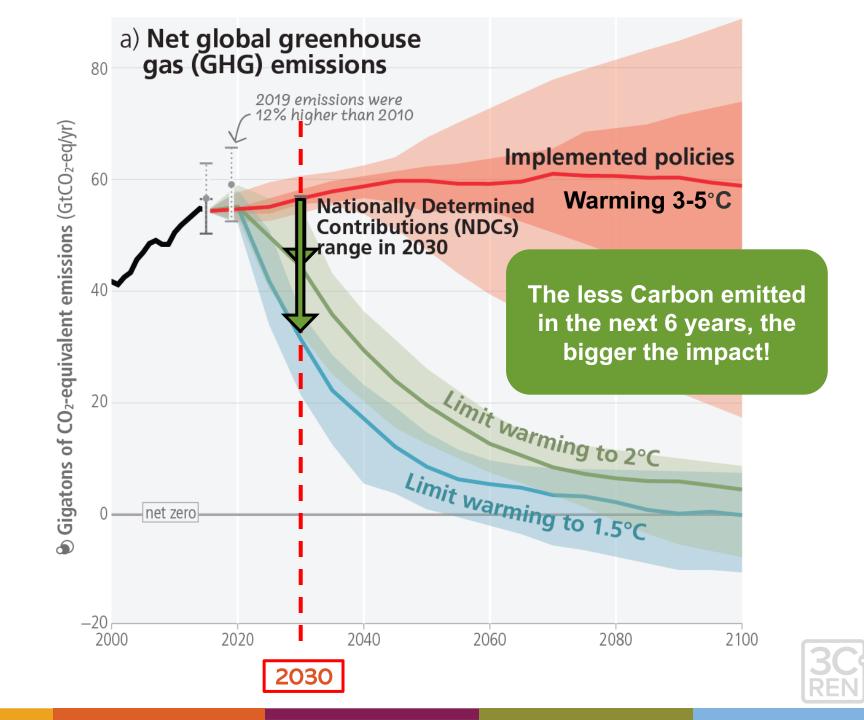
- GWP Global Warming Potential (in kg CO2e) A proxy for Embodied Carbon
- EPD Environmental Product Declarations (env. Impacts including GWP)
- HPDs Health Product Declaration (health impacts such as pollutants/toxins)
- LCA Life Cycle Analysis A systematic analysis of environmental impact of a product, material, process, etc.
- WBLCA Whole Building Life Cycle Assessment An evaluation of the environmental impact of a building's systems and materials
- For reference:
 - MT/t (metric tonne) = 1000kg or 2204.62lbs
 - Ton 2000 lbs



Embodied carbon makes up the majority of carbon associated with a building in the first 20 years.

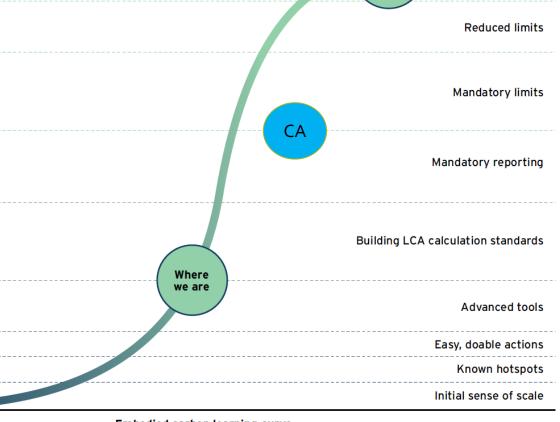
Why Care about EC?

Time value of carbon



Why Care about EC?

Time value of carbon



Another Curve

We must accelerate our position on this curve to meet climate thresholds

"To approach zero emissions by 2050, however,
we must immediately pick the low-hanging fruit
everywhere possible and simultaneously
accelerate the embodied carbon learning curve to
advance our knowledge beyond the easy
reductions, uncover further decarbonization
strategies, and turn buildings into climate
solutions with carbon-storing materials."

- RMI, "Driving Action on Embodied Carbon in Buildings"

Where we

need to be

Carbon storing

Embodied carbon learning curve

Exhibit 1 | RMI Graphic. Source: RMI analysis

Why Care about EC?

You'll soon have to....

CALGreen Intervening Code Cycle Update – Effective July 1, 2024

Threshold: All Non-Res Commercial projects over 100,000 SF and schools under jurisdiction of DSA over 50,000 SF.

Building Reuse

Section 5.105, Deconstruction and Reuse of Existing Structures

Components: Existing primary structural elements, enclosure, (roof framing, wall framing, and exterior finishes).

Exceptions: Additions 2x the area or more of the existing building.

Exclude: Window assemblies, insulation, portions structurally unsound or hazardous, and hazardous materials that are remediated as part of the project shall not be included in the calculation.

Life Cycle Analysis

Section 5.409, Life Cycle Assessment

Scope: 60-year cradle-to-grave WB LCA (ISO 14044), excluding operating energy. Show GWP analysis.

Components: Primary and secondary structural members, glazing, insulation, exterior finishes.

Prescriptive Path

Section 5.409.3, Product GWP Compliance

Components: Structural steel, rebar, flat glass, light and heavyduty mineral wool insulation, and ready mix concrete.

Exception: Concrete mixes can use a weighted average for all mixes.

Mandatory

45% of the structure and enclosure to be reused

Mandatory

10% reduction from baseline

Mandatory

175% of IW-EPD GWP Limits

Tier 1

75% of the structure and enclosure to be reused

Tier 2

75% of the structure and enclosure to be reused AND 30% of interior non-structural elements to be reused

Tier 1

15% reduction from baseline

Tier 2

20% reduction from baseline

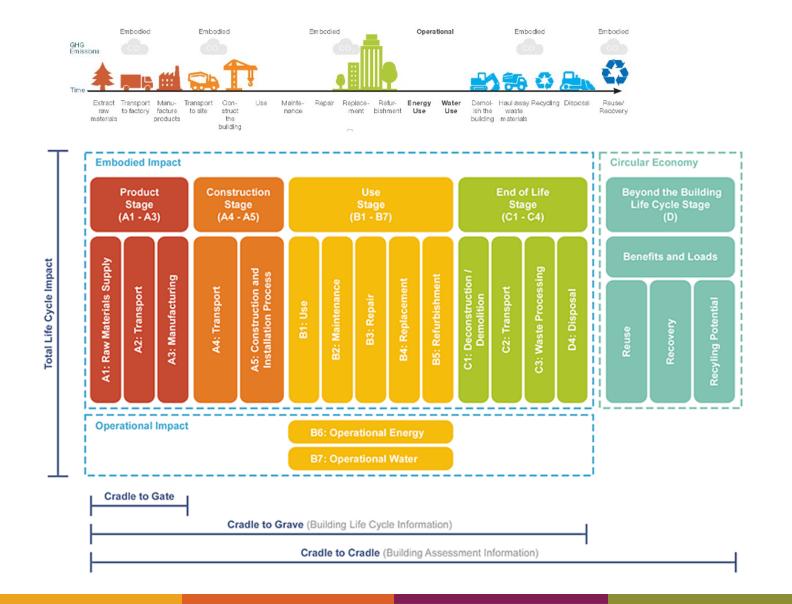
Tier 1

150% of IW-EPD GWP Limits

Tier 2

IW-EPD GWP Limits

Embodied Carbon in the Construction Process



Credit: Skanska

Life-Cycle Analysis: Stages and Scopes


Embodied Carbon Emissions by life cycle stage

The majority of building product embodied emissions occur up front

Breakdown of product life-cycle, not including building operational emissions

PRODUCT STAGE (A1-A3)

(B1-B5)

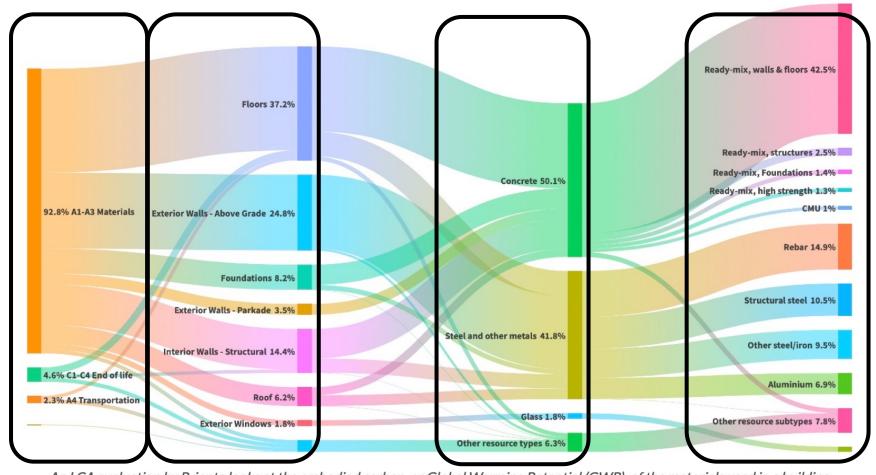


Exhibit 2 | RMI Graphic. Source: See endnote 7

Embodied Carbon emissions by materials

An LCA evaluation by Priopta looks at the embodied carbon, or Global Warming Potential (GWP), of the materials used in a building.

Cost-effective, Low-Carbon Product Selection

Source: https://rmi.org/embodied-carbon-101/

Concrete

Actions to Reduce Carbon

Substitute cement with alternative cementitious materials (ACMs).

Choose recycled aggregate. Select structural shapes and sizes that use less material while keeping the same structural integrity.

Structural Steel

Actions to Reduce Carbon

Specify CA or U.S.-made steel and steel with high recycled content. Prioritize electric arc furnace (EAF) production over basic oxygen furnace (BOF) production.

Rebar

Actions to Reduce Carbon

Use 97% or higher recycled content rebar. Select a structural concrete design that uses less material while keeping the same structural integrity.

Insulation

Actions to Reduce Carbon

Replace foam (especially XPS) with lower-carbon materials, like cellulose and mineral wool batt.

Glazing

Actions to Reduce Carbon

Select low-carbon window frame materials. Specify no more than two panes of glazing.

Finish Materials

Actions to Reduce Carbon

Select low-carbon and durable finish materials. Reuse materials and design for deconstruction and reuse for future tenant improvements.

Source: Embodied Carbon and CALGreen Embodied Carbon Requirements, California Energy Codes & Standards, 2024

Practical Steps for Reducing EC

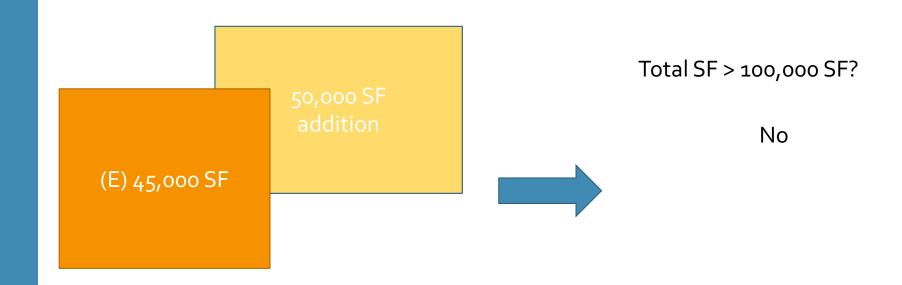
Top design interventions for embodied carbon reduction

	1	Reuse	Reuse an entire building and/or components of a deconstructed building. Limit the scope of renovations to what is needed. Prioritize salvaged materials over new production.
	2	Right-size	Optimize building size by using space more intensively and minimizing excess space. Design with better scheduling or dual-use spaces to decrease the building size.
%	3	Dematerialize	Expose structure instead of applying finishes. Optimize structural system to minimize excess material. Consider reducing overdesign by evaluating conservative load assumptions.
	4	Carbon storing materials	Carbon storing materials can speed transition to zero embodied emissions. Building projects can ask for responsibly produced biobased and concrete materials that can store carbon durably.
	5	Product substitutions	Make substitutions for the highest impact materials informed by a whole-building integrated approach or by low-material GWP limits when you cannot do an LCA.
	6	Sourcing	Ensure products are coming from legal and sustainable or regenerative sources. Prioritize local materials when data reveals they have reduced impacts associated with transport.
	7	Circular design	Reduce the impact over the building's life cycle and enable low-embodied-carbon future construction by prioritizing reusability, recyclability, design for disassembly, and durability.

Source: RMI, Driving Action on Embodied Carbon Reduction, pg 20.

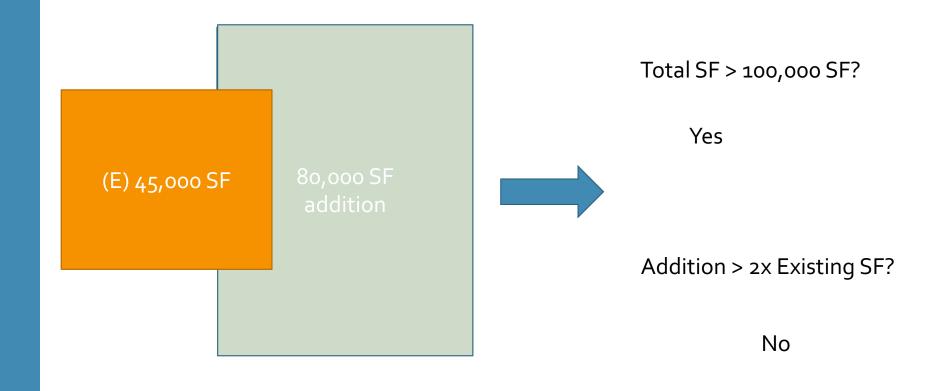
Three Methods for CALGreen Compliance

	Building Reuse	Whole Building LCA	Prescriptive Approach
<u>Mandatory*</u>	45% REUSE of structure and enclosure	10% REDUCTION from baseline building	Limit Materials to 175% of GWP limits
<u>Tier 1</u>	75% REUSE of structure and enclosure	15% REDUCTION from baseline building	Limit Materials to 150% of GWP limits
<u>Tier 2</u>	75% REUSE of structure and enclosure AND 30% REUSE of interior non- structural	20% REDUCTION from baseline building	Limit Materials to 100% of GWP limits



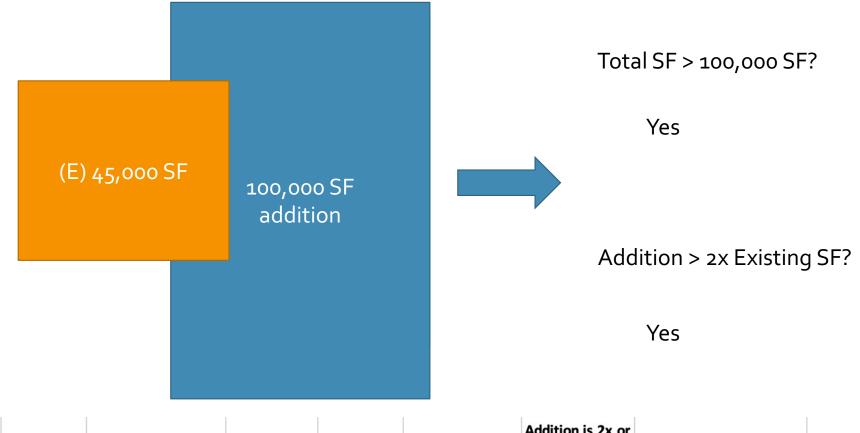
CALGreen: Reuse

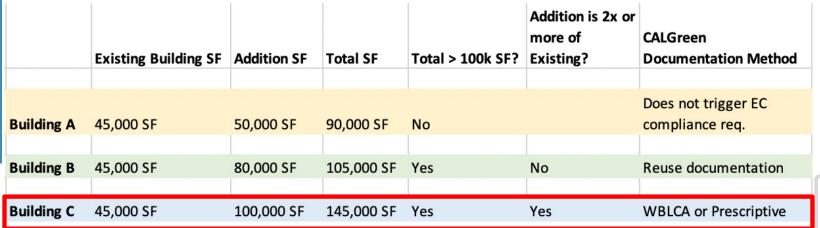
- 5.105.2 Reuse of existing building. An alteration or addition to an existing building shall maintain at a minimum 45 percent combined of the existing building's primary structural elements (foundations; columns, beams, walls, and floors; and lateral elements) and existing building enclosure (roof framing, wall framing and exterior finishes). Window assemblies, insulation, portions of buildings deemed structurally unsound or hazardous, and hazardous materials that are remediated as part of the project shall not be included in the calculation.
- Exception [BSC-CG, DSA-SS]: Combined addition(s) to existing building(s) of two times the area or more of the existing building(s) is not eligible to meet compliance with Section 5.105.2.



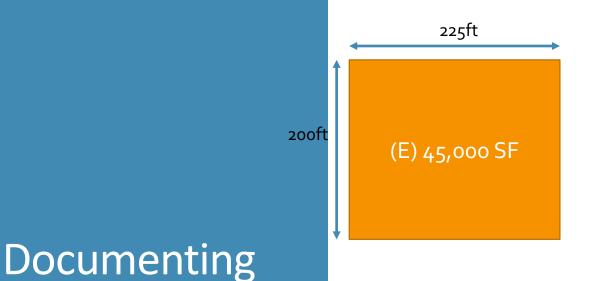
Case Study: Reuse

	Existing Building SF	Addition SF	Total SF	Total > 100k SF?	Addition is 2x or more of Existing?	CALGreen Documentation Method
Building A	45,000 SF	50,000 SF	90,000 SF	No		Does not trigger EC compliance req.
Building B	45,000 SF	80,000 SF	105,000 SF	Yes	No	Reuse documentation
Building C	45,000 SF	100,000 SF	145,000 SF	Yes	Yes	WBLCA or Prescriptive


Case Study: Reuse



	Existing Building SF	Addition SF	Total SF	Total > 100k SF?	Addition is 2x or more of Existing?	CALGreen Documentation Method
Building A	45,000 SF	50,000 SF	90,000 SF	No		Does not trigger EC compliance req.
Building B	45,000 SF	80,000 SF	105,000 SF	Yes	No	Reuse documentation
Building C	45,000 SF	100,000 SF	145,000 SF	Yes	Yes	WBLCA or Prescriptive

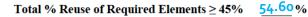


Case Study: Reuse

- Primary structural elements (foundations; columns, beams, walls, and floors; and lateral elements)
- Existing building enclosure (roof framing, wall framing and exterior finishes)
- Exclude windows, insulation, hazardous

Primary 9	Structure					
			Existing SF	Retained SF		
	perimeter foundation		2550	2550		
	concrete floor		45,000	45,000		
	CMU walls		8500	4250		
	lateral beams		900	0		
	excl windows		50	0		
	Si	ubtotal	57000	51800	90.88	%
Existing e	enclosure					
	roof framing		45000	0		
	wall framing		n/a	n/a		
	exterior finishes		8450	8450		
	Si	ubtotal	53450	8450	15.81	%
Total			110,350	60,250	54.60	%

WORKSHEET (WS-3) 5.105.2 BUILDING REUSE


DOCUMENTATION OF COMPLIANCE OF EXISTING BUILDING REUSE

Area of Existing Building(s) 45,000 SF Area of Aggregate Addition(s) (if applicable) 80,000 SF

	EXISTING TOTAL AREA (A)	RETAINED TOTAL AREA (B)	% OF RETAINED STRUCTURE (B)/(A)
Primary Structural Elements of Existing Building(s) (foundations; columns, beams, walls, and floors; and lateral elements)	57 <u>,000</u> SF	5 <u>1,800</u> SF	<u>9</u> 0.88 %
Building Enclosure of Existing Building(s) (roof framing, wall framing and exterior finishes only)	53 <u>,450</u> SF	<u>8450</u> SF	<u>15.81</u> %

Reuse

CALGreen: WBLCA

5.409.2 Whole building life cycle assessment. Projects shall conduct a cradle-to-grave whole building life cycle assessment performed in accordance with ISO 14040 and ISO14044, excluding operating energy, and demonstrating a minimum 10-percent reduction in global warming potential (GWP) as compared to a reference baseline building of similar size, function, complexity, type of construction, material specification, and location that meets the requirements of the California Energy Code currently in effect.


5.409.2.1 Building components. Building enclosure components included in the assessment shall be limited to glazing assemblies, insulation, and exterior finishes. Primary and secondary structural members included in the assessment shall be limited to footings and foundations, and structural columns, beams, walls, roofs, and floors.

ASTM E2921-22 **Reference building** shall have the same location, orientation, size, function and space conditioning as the proposed building. Materials shall be based on typical design or construction practices for the area in which the site is located.

CALGreen WBLCA Scope

Documenting WBLCA

 A summary of the GWP analysis produced by the software and Worksheet WS-4 signed by the design professional of record shall be provided in the construction documents as documentation of compliance.

WORKSHEET (WS-4) Section 5.409.2 WHOLE BUILDING LIFE CYCLE ASSESSMENT

Responsible Designer's Declaration Statement:

I attest that the Whole Building Life Cycle Analysis has been performed according to the requirements of Section 5.409.2 and has met the minimum 10 percent reduction in global warming potential as compared to a reference baseline building of similar size, function, complexity, type of construction, material specification, and location that meets the requirements of the California Energy Code currently in effect. Furthermore, I will ensure during construction that the material specifications will be reviewed for substantial conformance with the life cycle assessment indicated on the approved plans so at the close of construction the minimum 10 percent reduction in global warming potential is thereby secured.

Signature:	
Company:	Date:
	License:
City/State/Zip:	Phone:

	CALGreen	Whole E	Building LC	A Reportii	ng Templat	e					
LCA model run		L	ber input	Units Overall	scope included (select all that ap	ply)				
LCA Modeler (compa	any)[private]			Structu	ire (required)						
Date of Model Run (mm/yyyy)			Enclosu	ure (required)						
Project Phase at Mo				Interio	rs (optional)						
Reference Study Per	iod (years)			MEP (o	ptional)	130					
Software and Versio	n Used*			Site/La	ndscaping (option	al)					
Biogenic Carbon Incl	luded* (y/n)			FFE (op	tional)	1.51					
Model Floor Area			m	2							
Mandatory Sco Please break out the f Whole Building GWP	pe Items ollowing in per element o	emissions by lif	fe cycle in kgCO2e.	Leave blank any se	ections that were n	ot calculated sepa	rately from				
			Upfront Carbon	Use	Phase End of I	Life Total	_				•
		A1-3	Α4	AS B	1-5 C1-4	1					
Baselin	e Structure GWP (kg CC				Т						
Baselin	1	00,000 —									
Baseline Who	•										
		80.000									
Propose											
Propose											
Proposed Who											
Proposed Who		60,000									
A1-A3* (A1) Raw Material Suppli Manufacturing A4*		40,000									
(A4) Transportation to si		20,000									
(A5) Construction Installi unicown		0									
B1-B5* (B1) Like, (B2) Maintenas Refurbishment		20,000		· · · · · · · · · · · · · · · · · · ·			1		1	Г	т
Optional Items Please break out the f				Foundations	Wall		lumns and Bear		oors	Roofs	Project Extra Materials
whole Building GWP				E	Baseline – SB	Fire Dispatch	Proj	posed SB F	ire Dispatch		
	Project Name	Unit	Foundations	Walls	Columns and Beams	Floors	Roofs	Project Extra Materials	Total		
Site/L	Baseline - SB Fire Dispatch	kg CO2 eq	7.54E+04	9.93E+04	1.19E+04	0.00E+00	8.11E+04	0.00E+00	2.68E+05		
	Proposed SB Fire Dispatch	kg CO2 eq	7.26E+04	3.71E+04	-3.24E+03	0.00E+00	7.92E+04	0.00E+00	1.86E+05		
	Total	kg CO2 eq	1.48E+05	1.36E+05	8.69E+03	0.00E+00	1.60E+05	0.00E+00	4.53E+05		

A copy of the whole building life cycle assessment which includes the GWP analysis produced by the software, in addition to the maintenance and training information, shall be included in the O&M manual.

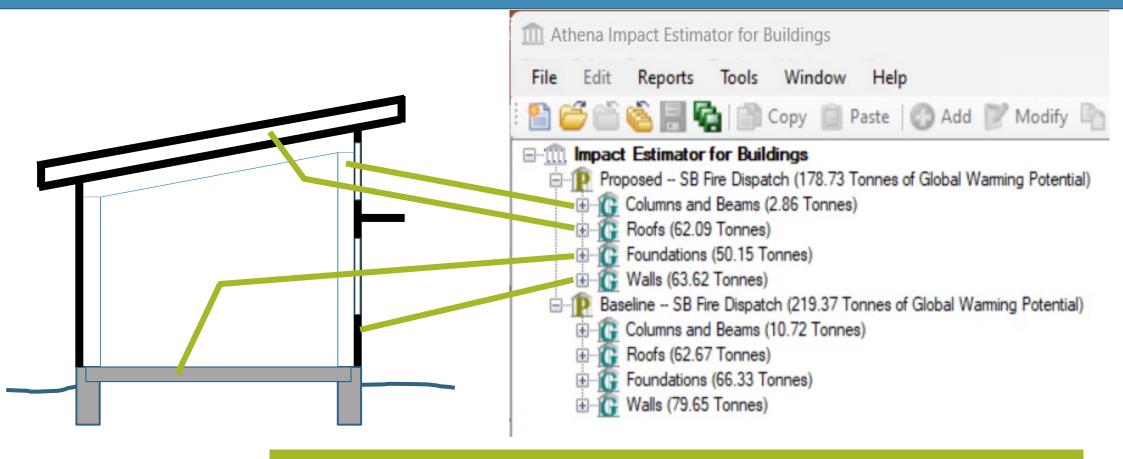
Tools for modeling WBLCA

Free software:

Planetary

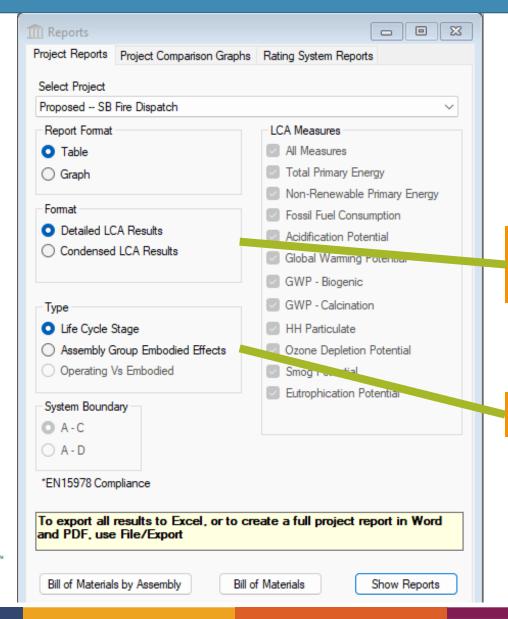
Paid software:

(fka GaBi)


(Revit plug-in)

Athena – Building Tree Organization

The user can define the wall and roof assemblies.


The wall assemblies include "openings" for basic window inputs.

The foundation can include slab, footings, grade beams, pad footings and rebar.

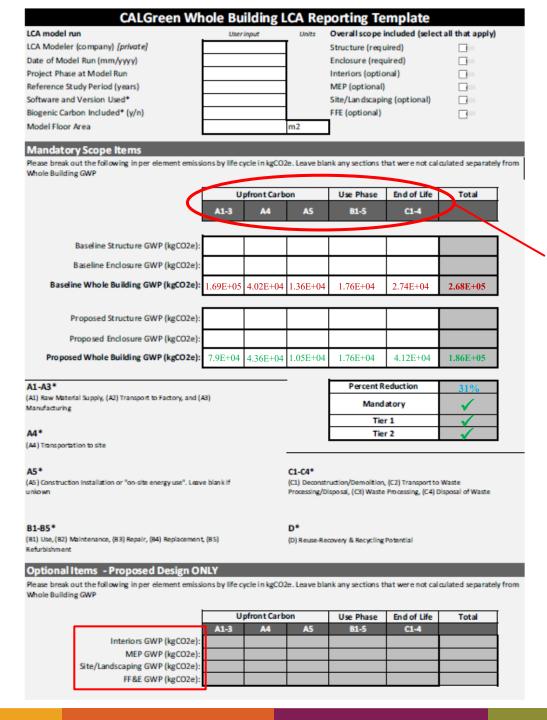
Athena – Excerpt from Project Reports: Data for CALGreen Reporting

Note:

Reports to be run for Proposed and Baseline projects for comparison

Detailed LCA Results

Life Cycle Stage


Athena: Summary Comparison Report (Data for CALGreen Reporting)

		PRODUCT (A1 to A3)			CONSTRUCTION PROCESS (A4 & A5)			USE (B2, B4 & B6)				END OF LIFE (C1 to C4)			TOTAL EFFECTS	
LCA Measures	Unit	Manufacturing	Transport	Total	Construction- Installation Process	Transport	Total	Replacement Manufacturing	Replacement Transport	Operational Energy Use Total	Total	De-construction, Demolition, Disposal & Waste Processing	Transport	Total	A to C	A to D
Global Warming Potential	kg CO2 eq	7.24E+04	5.06E+02	7.29E+04	1.05E+04	4.36E+04	5.41E+04	1.58E+04	1.77E+03	0.00E+00	1.76E+04	3.90E+04	2.13E+03	4.12E+04	1.86E+05	1.85E+05
GWP - Biogenic	kg CO2 eq	-8.42E+04	0.00E+00	-8.42E+04	-2.54E+03	0.00E+00	-2.54E+03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.27E+04	0.00E+00	3.27E+04	-5.40E+04	-5.40E+04
GWP - Calcination	kg CO2 eq	1.45E+04	0.00E+00	1.45E+04	7.26E+02	0.00E+00	7.26E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.52E+04	1.52E+04
Acidification Potential	kg SO2 eq	5.80E+02	5.07E+00	5.85E+02	8.42E+01	4.93E+02	5.77E+02	1.03E+02	1.95E+01	0.00E+00	1.22E+02	7.66E+01	2.05E+01	9.71E+01	1.38E+03	1.33E+03
HH Particulate	kg PM2.5 eq	9.71E+01	2.70E-01	9.74E+01	9.51E+00	2.40E+01	3.35E+01	3.81E+01	9.86E-01	0.00E+00	3.91E+01	3.20E+01	1.14E+00	3.31E+01	2.03E+02	1.97E+02
Eutrophication Potential	kg N eq	1.89E+02	3.15E-01	1.89E+02	1.67E+01	3.05E+01	4.72E+01	1.73E+01	1.21E+00	0.00E+00	1.85E+01	6.16E+00	1.27E+00	7.44E+00	2.62E+02	2.62E+02
Ozone Depletion Potential	kg CFC-11 eq	4.04E-02	1.81E-08	4.04E-02	2.13E-03	1.71E-06	2.13E-03	4.42E-04	6.96E-08	0.00E+00	4.42E-04	2.43E-04	7.44E-08	2.43E-04	4.32E-02	4.32E-02
Smog Potential	kg O3 eq	1.14E+04	1.61E+02	1.15E+04	2.30E+03	1.57E+04	1.80E+04	9.00E+02	6.21E+02	0.00E+00	1.52E+03	2.39E+03	6.47E+02	3.04E+03	3.41E+04	3.38E+04
Total Primary Energy	МЭ	1.67E+06	7.37E+03	1.68E+06	1.29E+05	6.29E+05	7.58E+05	3.03E+05	2.56E+04	0.00E+00	3.28E+05	9.33E+04	3.11E+04	1.24E+05	2.89E+06	2.89E+06
Non-Renewable Energy	МЭ	1.28E+06	7.37E+03	1.29E+06	1.07E+05	6.28E+05	7.36E+05	2.92E+05	2.56E+04	0.00E+00	3.18E+05	9.28E+04	3.11E+04	1.24E+05	2.47E+06	2.47E+06
Fossil Fuel Consumption	MJ	1.21E+06	7.35E+03	1.22E+06	1.03E+05	6.27E+05	7.30E+05	2.65E+05	2.55E+04	0.00E+00	2.91E+05	9.06E+04	3.10E+04	1.22E+05	2.36E+06	2.38E+06

Documenting WBLCA

- In addition, the enforcing entity may require Worksheet WS-9 to demonstrate compliance with the requirements.
- Cradle-to-Grave
- Consult ASTM E2921-22 for standard practice guidelines for baseline
- Mandatory measure targets a 10% reduction from baseline; 15% for Tier 1; 20% for Tier 2

CALGreen: Prescriptive Path

- 5.409.3 Product GWP compliance—prescriptive path. Each product that is permanently installed and listed in Table 5.409.3 shall have a Type III environmental product declaration (EPD), either product-specific or factory-specific.
 - 5.409.3.1 Products shall not exceed the maximum GWP value specified in Table 5.409.3.
- Exception: Concrete may be considered one product category to meet compliance with this section. A weighted average of the maximum GWP for all concrete mixes installed in the project shall be less than the weighted average maximum GWP allowed per Table 5.409.3. For the purposes of this exception, industrywide EPDs are acceptable.

Table 5.409.3 GWP Limits

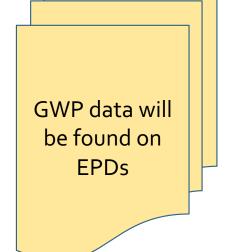
Only certain steel, glass and insulation...

.... and concrete.
Allowed GWP
keyed to
strength and
type of readymix

TABLE 5.409.3 PRODUCT GWP LIMITS

BUY CLEAN CALIFORNIA MATERIALS PRODUCT CATEGORY ¹	MAXIMUM ACCEPTABLE GWP VALUE (unfabricated) (GWP _{allowed})	UNIT OF MEASUREMENT
Hot-rolled structural steel sections	1.77	MT CO ₂ e/MT
Hollow structural sections	3.00	MT CO ₂ e/MT
Steel plate	2.61	MT CO ₂ e/MT
Concrete reinforcing steel	1.56	MT CO ₂ e/MT
Flat glass	2.50	kg CO ₂ e/MT
Light-density mineral wool board insulation	5.83	kg CO ₂ e/1 m ²
Heavy-density mineral wool board insulation	14.28	kg CO ₂ e/1 m ²
Come	note Deady Missad2.3	

Concrete, Ready-Mixed^{2, 3}


CONCRETE PRODUCT CATEGORY	MAXIMUM GWP ALLOWED VALUE (GWP _{allowed})	UNIT OF MEASUREMENT
up to 2499 psi	450	kg CO ₂ e/m ³
2500–3499 psi	489	kg CO ₂ e/m ³
3500–4499 psi	566	kg CO ₂ e/m ³
4500–5499 psi	661	kg CO ₂ e/m³
5500–6499 psi	701	kg CO ₂ e/m ³
6500 psi and greater	799	kg CO ₂ e/m³
Concrete,	Lightweight Ready-Mixed	²
CONCRETE PRODUCT CATEGORY	MAXIMUM GWP ALLOWED VALUE (GWP _{allowed})	UNIT OF MEASUREMENT
up to 2499 psi	875	kg CO ₂ e/m³
2500–3499 psi	956	kg CO ₂ e/m³

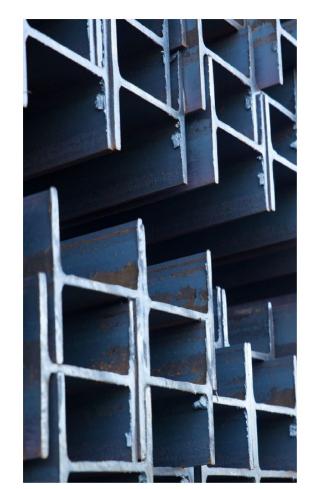
1039

kg CO₂e/m³

3500-4499 psi

Note: Units for steel are MT or metric tonne. Often noted in EPDs as t.

Environmental Product Declarations (EPDs)


- Standardized document with information about environmental impact of products – including GWP
- Type III EPDs are thirdparty verified
- May represent:
 - Product-specific data
 - Factory-specific data
 - Industry average one product across several manufacturers

ENVIRONMENTAL PRODUCT DECLARATION

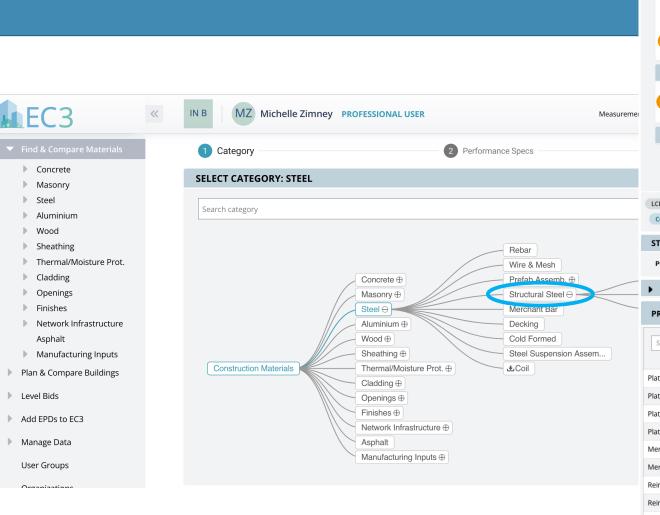
FABRICATED HOT-ROLLED STRUCTURAL STEEL SECTIONS

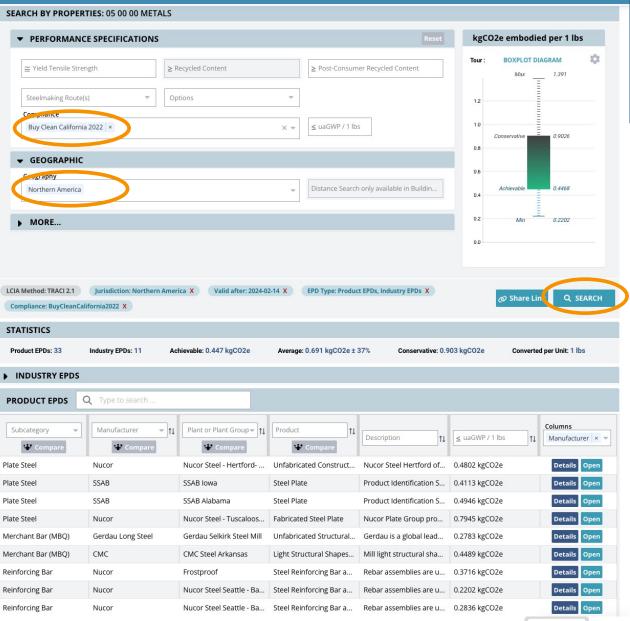
NUCOR CORPORATION

NUCOR

Nucor Corporation operates two ISO 14001-certified structural steel mills, Nucor-Yamato Steel and Nucor Steel Berkeley, that have the capacity to annually produce up to 3,250,000 tons of wide-flange steel beams, pilings and heavy structural steel products for fabricators, construction companies, manufacturers and steel service centers.

Nucor Corporation is North America's largest recycler, turning approximately 20 million net tons of scrap steel in 2019 into new steel. Nucor uses Electric Arc Furnace (EAF) technology at each of its 25 steel recycling facilities. EAFs use post-consumer scrap as its major feedstock, unlike traditional blast furnace steelmaking, which produces more than 70% of the world's steel using mined iron er and metallurgical coal as feedstock.


Through its use of EAFs, Nucor's steelmaking CO2 emissions are one-half of the global average on a per ton basis, and Nucor's energy intensity is approximately one-quarter the global average.



EC3 Tool: Searchable EPD database

Sample EPD: Declared Unit, Validity and Scope

INFO PAGE

MENTAL PRODUCT DECLARATION

Fabricated Hot-Rolled Structural Steel Sections
Designated Steel Construction Product

According to ISO 14025, EN 15804 and ISO 21930

EPD PROGRAM AND PROGRAM OPERATOR NAME, ADDRESS, LOGO, AND WEBSITE	UL Environment 333 Pfingsten Road Northbrook, IL 60611	https://www.ul.com/ https://spot.ul.com	
GENERAL PROGRAM INSTRUCTIONS AND VERSION NUMBER	General Program Instructions v.2.5 March 2020	1	
MANUFACTURER NAME AND ADDRESS	Nucor Corporation, 1915 Rexford Road, Charlot	tte, North Carolina 28211	
DECLARATION NUMBER	4789793365.102.1		
DECLARED PRODUCT & FUNCTIONAL UNIT OR DECLARED UNIT	Fabricated Hot-Rolled Structural Steel Sections	, 1 metric ton	
REFERENCE PCR AND VERSION NUMBER	Part A: Calculation Rules for the LCA and Requ Environment, V3.2, 12.12.2018) and Part B: De Requirements (UL Environment, V2.0, 08.26.20	signated Steel Construction	VUL Product EPD
DESCRIPTION OF PRODUCT APPLICATION/USE	Hot rolled structural steel sections used in const	ruction	
PRODUCT RSL DESCRIPTION (IF APPL.)	N/A		
MARKETS OF APPLICABILITY	North America		
DATE OF ISSUE	January 1, 2021		
PERIOD OF VALIDITY	5 Year		
EPD TYPE	Product-Specific		
EPD SCOPE	Cradle to gate		
YEAR(S) OF REPORTED PRIMARY DATA	2019		
LCA SOFTWARE & VERSION NUMBER	GaBi v10		
LCI DATABASE(S) & VERSION NUMBER	GaBi 2020.2		
LCIA METHODOLOGY & VERSION NUMBER	IPCC AR5 + TRACI 2.1		

This PCR review was conducted by:

This declaration was independently verified in accordance with ISO 14025: 2006 INTERNAL SEXTERNAL

This life cycle assessment was independently verified in accordance with ISO 14044 and the reference PCR by:

OL Environment	
PCR Review Panel	
epd@ulenvironment.com	
Grant R. Martin	
Grant R. Martin, UL Environment	
Jun A. Millert.	
mes Mellentine, Thrive ESG	

EPD PROGRAM AND PROGRAM OPERATOR NAME, ADDRESS, LOGO, AND WEBSITE	UL Environment https://www.ul.com/ 333 Pfingsten Road Northbrook, IL 60611 https://spot.ul.com/
GENERAL PROGRAM INSTRUCTIONS AND VERSION NUMBER	General Program Instructions v.2.5 March 2020
MANUFACTURER NAME AND ADDRESS	Nucor Corporation, 1915 Rexford Road, Charlotte, North Carolina 28211
DECLARATION NUMBER	4789793365 102 1
DECLARED PRODUCT & FUNCTIONAL UNIT OR DECLARED UNIT	Fabricated Hot-Rolled Structural Steel Sections, 1 metric ton
REFERENCE PCR AND VERSION NUMBER	Fart A. Calculation Rules for the LCA and Requirements Project Report, (IBU/UL Environment, V3.2, 12.12.2018) and Part B: Designated Steel Construction Product EPD Requirements (UL Environment, V2.0, 08.26.2020).
DESCRIPTION OF PRODUCT APPLICATION/USE	Hot rolled structural steel sections used in construction
PRODUCT RSL DESCRIPTION (IF APPL.)	N/A
MARKETS OF APPLICABILITY	North America
DATE OF ISSUE	January 1, 2021
PERIOD OF VALIDITY	5 Year
EPD TYPE	Product-Specific
EPD SCOPE	Cradle to gate
YEAR(S) OF REPORTED PRIMARY DATA	2019
LCA SOFTWARE & VERSION NUMBER	GaBi v10
LCI DATABASE(S) & VERSION NUMBER	GaBi 2020.2

This PCR Review was conducted by:

This declaration was independently verified in accordance with ISO 14025: 2006.

□ INTERNAL

■ EXTERNAL

This life cycle assessment was independently verified in accordance with ISO 14044 and the reference PCR by:

Sample EPD: Where to find kg CO2 eq (aka GWP)

ENVIRONMENTAL PRODUCT DECLARATION

NUCDR®

Fabricated Hot-Rolled Structural Steel Sections
Designated Steel Construction Product

According to ISO 14025, EN 15804 and ISO 21930:2017

Table 2. LCIA results, per 1 metric ton

PARAMETER	UNIT	A1	A2	A3	TOTAL
GWP 100	kg CO₂ eq.	1.10E+03	1.07E+01	1.10E+02	1.22E+03
ODP	kg CFC 11 eq.	4.67E-10	1.00E-09	3.38E-08	3.53F-05
AP	kg SO ₂ eq.	2.80E+00	4.96E-02	2.98E-01	3.15E+00
EP	kg N eq.	1.32E-01	4.20E-03	1.51E-02	1.51E-01
SFP	kg O₃ eq.	4.49E+01	1.43E+00	2.92E+00	4.92E+01
ADP _{fossil}	MJ surplus	1.27E+03	1.72E+01	8.52E+01	1.37E+03

Table 3. LCIA results, per 1 short ton

PARAMETER	UNIT	A1	A2	A3	TOTAL
GWP 100	kg CO₂ eq.	9.96E+02	9.70E+00	9.97E+01	1.10E+03
ODP	kg CFC 11 eq.	4.24E-10	9.08E-10	3.07E-08	3.20E-08
AP	kg SO ₂ eq.	2.54E+00	4.50E-02	2.70E-01	2.86E+00

MAXIMUM BUY CLEAN CALIFORNIA ACCEPTABLE GWP UNIT OF MATERIALS PRODUCT VALUE (unfabricated) MEASUREMENT CATEGORY1 (GWP_{allowed}) Hot-rolled structural steel MT CO2e/MT 1.77 sections MT CO2e/MT Hollow structural sections 3.00 Steel plate MT CO2e/MT 2.61

1.56

2.50

5.83

14.28

TABLE 5.409.3 PRODUCT GWP LIMITS

1.22E+03 kg CO2e = 1.22*1000 kg CO2e

= 1220 kg CO2e

Concrete reinforcing steel

Light-density mineral

wool board insulation

Heavy-density mineral

wool board insulation

Flat glass

BUT

1000 kg = 1 MT

SO

1220 kg CO2e / 1000

= 1.22MT CO2e per MT

MT CO2e/MT

kg CO2e/MT

kg CO₂e/1 m²

kg CO₂e/1 m²

TABLE 5.409.3 PRODUCT GWP LIMITS				
BUY CLEAN CALIFORNIA MATERIALS PRODUCT CATEGORY ¹	MAXIMUM ACCEPTABLE GWP VALUE (unfabricated) (GWP _{allowed})	UNIT OF MEASUREMENT		
Hot-rolled structural steel sections	1.77	MT CO ₂ e/MT		
Hollow structural sections	3.00	MT CO ₂ e/MT		
Steel plate	2.61	MT CO ₂ e/MT		
Concrete reinforcing steel	1.56	MT CO ₂ e/MT		
Flat glass	2.50	kg CO ₂ e/MT		
Light-density mineral wool board insulation	5.83	kg CO ₂ e/1 m ²		
Heavy-density mineral wool board insulation	14.28	kg CO ₂ e/1 m ²		

Documenting Prescriptive Path (nonconcrete)

There is no form, but documentation to demonstrate compliance might include a table similar to below with each required material listed and accompanied by EPD-sourced EC numbers. Also submit EPDs and signed WS-5 declaration statement.

Material	Manufacturer	Max GWP Allowed	Product Actual GWP (per EPD)
Hot-rolled structural steel	Nucor	1.77 MT CO2e/MT	1.22MT CO2e/MT
Hollow structural steel	N/A	3.00 MT CO2e/MT	
Steel plate	N/A	2.61 MT CO2e/MT	
Concrete reinforcing steel		1.56 MT CO2e/MT	
Flat glass		2.5 kg CO2e/MT	
Light-density mineral wool board insulation		5.83 kg CO2e/1 m2	
Heavy-density mineral wool board insulation	N/A	14.28 kg CO2e/1 m2	

For Concrete, a weighted calculation must be performed per exception equation 5.409.3.1

GWPn < GWPallowed

Where $GWPn = \Sigma (GWPn)(vn)$ and $GWPallowed = \Sigma (GWPallowed)(vn)$

- n = each concrete mix installed in the project
- GWPn = the GWP for concrete mix n per concrete mix EPD
- GWPallowed = the GWP potential allowed for concrete mix n per Table 5.409.3
- vn = the volume of concrete mix n installed in the project, in m3

Documenting
Prescriptive
Path (concrete)

Concrete, Ready-Mixed ^{2, 3}				
CONCRETE PRODUCT CATEGORY	MAXIMUM GWP ALLOWED VALUE (GWP _{allowed})	UNIT OF MEASUREMENT		
up to 2499 psi	450	kg CO ₂ e/m³		
2500-3499 psi	489	kg CO ₂ e/m ³		
3500-4499 psi	566	kg CO ₂ e/m ³		
4500-5499 psi	661	kg CO ₂ e/m ³		
5500-6499 psi	701	kg CO ₂ e/m ³		
6500 psi and greater	799	kg CO ₂ e/m³		
Concrete,	ightweight Ready-Mixed			
CONCRETE PRODUCT CATEGORY	MAXIMUM GWP ALLOWED VALUE (GWP _{allowed})	UNIT OF MEASUREMENT		
up to 2499 psi	875	kg CO ₂ e/m³		
2500-3499 psi	956	kg CO ₂ e/m³		
3500-4499 psi	1039	kg CO ₂ e/m ³		

GWPn = the GWP for concrete mix n per concrete mix EPD

GWPallowed = the GWP potential allowed for concrete mix n per Table 5.409.3

Concrete, Ready-Mixed ^{2, 3}				
CONCRETE PRODUCT CATEGORY	MAXIMUM GWP ALLOWED VALUE (GWP _{allowed})	UNIT OF MEASUREMENT		
up to 2499 psi	450	kg CO ₂ e/m³		
2500–3499 psi	489	kg CO ₂ e/m ³		
3500–4499 psi	566	kg CO ₂ e/m³		
4500–5499 psi	661	kg CO ₂ e/m³		
5500-6499 psi	701	kg CO ₂ e/m ³		
6500 psi and greater	799	kg CO ₂ e/m³		
Concrete,	Lightweight Ready-Mixed	2		
CONCRETE PRODUCT CATEGORY	MAXIMUM GWP ALLOWED VALUE (GWP _{allowed})	UNIT OF MEASUREMENT		
up to 2499 psi	875	kg CO ₂ e/m³		
2500-3499 psi	956	kg CO ₂ e/m³		
3500-4499 psi	1039	kg CO ₂ e/m ³		

100,000 SF addition

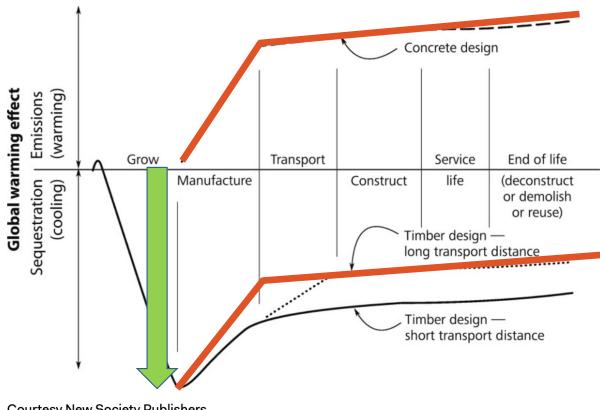
GWPn < GWPallowed

Where $GWPn = \Sigma (GWPn)(vn)$ and $GWPallowed = \Sigma (GWPallowed)(vn)$

- n = each concrete mix installed in the project
- GWPn = the GWP for concrete mix n per concrete mix EPD
- GWPallowed = the GWP potential allowed for concrete mix n per Table 5.409.3
- vn = the volume of concrete mix n installed in the project, in m3

Documenting Prescriptive Path (concrete)

GWP data will be found on EPDs From Table 5.409.3 **Concrete Calculation** GWPallowed * vn n (mix) volume (vn) psi GWPn GWPn * vn GWPallowed m3 kgCO2e kgCO2e 108 foundation 4000 320.1 34570.8 566 61128 243972 slab 1080 3000 225.9 489 528120 columns 12 4500 291.5 3498 661 7932 Σ GWPn*vn 282040.8 Σ GWPallowed*vn 597180



A Note About Carbon Sequestering Materials

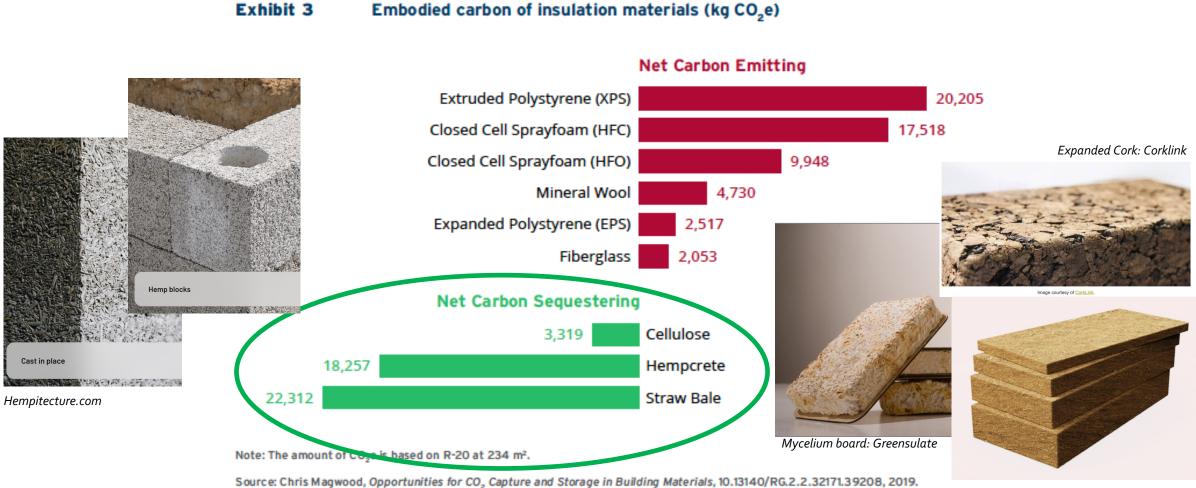
Trees but also....

- Hemp
- Straw
- Ag residues
- Seaweed
- Cork
- Bamboo
- Mushrooms
- Even Algae

Courtesy New Society Publishers

Storing Carbon into the Future - Materials

Categories of carbon-storing materials


SOURCES PRODUCTS

Biogenic Carbon Storage					
Agricultural and forestry residues and by-products	Straw (rice, wheat), hulls (rice), shells (nuts), stalks		Board products <mark>, insulation,</mark> cladding, aggregate		
Waste stream fibers	Paper, cardboard, textiles		Board products, insulation		
Purpose-grown crops	Cork, bamboo, hemp	30000	Boards, flooring <mark>, insulation,</mark> structure, cladding		
Lab-grown materials	Mycelium composites		Insulation, structure		
Timber	Lumber, mass timber, sheet goods		Structure, board products, flooring, cladding		
	Mineralized (Carbon Storage			
Biomineralization	Algae and microbe-grown cement		Concrete, concrete masonry unit (CMU), brick		
Captured carbon	Synthetic limestone aggregate and accelerated carbonation		Concrete, CMU, brick		
Biochar	Biogenic carbon transformed into stable, pyrogenic carbon through combustion in the absence of oxygen		Aggregate, tiles, bricks		

Insulation: Carbon Sequestration Opportunities

Exhibit 3

Storing Carbon into the Future - Landscapes

Tools:

climate**positive** Pathfinder

EDESIGN TOOLKIT≡

Strategies

Increase biodiversity

Increase plant

functional diversity

Design with plant

Layer and cluster

plants

life history strategies

Description

Increasing the size and longevity of plants will increase the potential carbon sequestration in biomass. Layering plants increases potential biomass of the whole system.

Maximizing biodiversity

provides another avenue to

plants and has important co-

benefits to provide habitat

Combining plants with a

sequestration.

diversity of functional traits

creates a system where more

spatial and functional niches are filled, leading to increased productivity and carbon

Planting the right type or

type of plants for the site

will increase efficiency and

resilience of the landscape.

Layering and grouping plants

create nested ecosystems that

can pack in more biomass

form rich interconnections

and self-organize.

plant or combining the right

achieve functional diversity of

- · Include larger trees and plants, if given appropriate
- · Include species that are longer-lived and low-
- · Include both fast and slow-growing trees and plants
- · Include deep-rooted trees and plants
- · Increase the amount of woody plants
- · Include deciduous trees in the plant palette
- · Increase vertical layering of plant types
- Include a diversity of plant species
- Increase phylogenetic diversity of the plant community
- · Choose native plants
- · Choose genetically local plant sources
- · Include a range of plant sizes: height and spread
- · Include a range of plant forms and habits
- Include a diversity of root depths and architectural
- Include both warm and cool season grasses
- · Include nitrogen-fixing plants, especially with warm season grasses
- · Match plant life history strategies to the site.
- · Mix plant life history strategies when appropriate
- Include both annual and perennial plants, but a larger proportion of perennial plants
- · Avoid including plants that will be too competitive or
- · Grouping small plant communities
- Clustering or massing similar types of plants
- Vertical layering
- · Layering through time

Source: Ross NW Watergardens, Shoi Sugi Ban: Setting Fire to Portland's Fences

Source: American Society of Landscape Architects, Landscape Design for Carbon Sequestration

Questions & Discussion

Closing

- Continuing Education Units Available
 - Contact <u>itzel.torres@ventura.org</u> for AIA and ICC LUs
- Coming to Your Inbox Soon!
 - Slides, Recording, & Survey Please Take It and Help Us Out!
- Upcoming Courses:
 - January 31 Energy Code Compliance: Using HERS Measures (Part 1)
 - February 7 <u>SLOCAOR All Electric HVAC for Realtors</u>
 - February 13 Elements of a Whole House Assessment: The Home Energy Audit Explained
 - February 14 Energy Code Implementation: Single Family Construction
 - February 20 <u>Practical Ways to Address Embodied Carbon</u>
 - February 27 Residential Load Calculation and Duct Design for Building Departments
- Visit <u>www.3c-ren.org/events</u> for our full catalog of trainings.

Questions about Title 24?

Energy Code Coaches are local experts who can help answer your Title 24 questions. Coaches have decades of experience in green building and energy efficiency improvements. They can provide citations and offer advice for your project to help your plans and forms earn approval the first time.

Online:

3c-ren.org/codes

Call:

805.781.1201

Thank you!

For more info: 3c-ren.org

For questions: info@3c-ren.org

TRI-COUNTY REGIONAL ENERGY NETWORK
SAN LUIS OBISPO • SANTA BARBARA • VENTURA