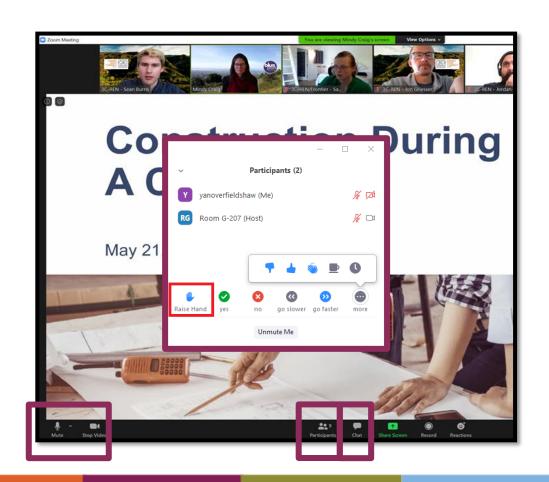


We will be starting soon!

Thanks for joining us

When Title 24 Modeling and HVAC Design Meet – Real World Case Studies

Nick Brown - Build Smart Group


Russ King - Coded Energy Inc.

May 30th, 2024

Zoom Orientation

- Please be sure your full name is displayed
- Please mute upon joining
- Use "Chat" box to share questions or comments
- Under "Participant" select "Raise Hand" to share a question or comment verbally
- The session may be recorded and posted to 3C-REN's on-demand page.
 Feel free to ask questions via the chat and keep video off if you want to remain anonymous in the recording.

3C-REN: Tri-County Regional Energy Network

- Three counties working together to improve energy efficiency in the region
- Services for
 - Building Professionals: industry events, training, and energy code compliance support
 - Households: free and discounted home upgrades
- Funded by ratepayer dollars that 3C-REN returns to the region

- Serves all building professionals
- Three services
 - Energy Code Coach
 - Training and Support
 - Regional Forums
- Makes the Energy Code easy to follow

Energy Code Coach: 3c-ren.org/codes 805.781.1201

Event Registration: **3c-ren.org/events**

- Serves current and prospective building professionals
- Expert instruction:
 - Technical skills
 - Soft skills
- Helps workers to thrive in an evolving industry

Event Registration: **3c-ren.org/events**

Multifamily (5+ units)

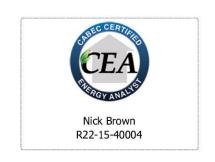
- No cost technical assistance
- Rebates up to \$750/apartment plus additional rebates for specialty measures like heat pumps

Single Family (up to 4 units)

- Sign up to participate!
- Get paid for the metered energy savings of your customers

Enrollment: 3C-REN.org/contractor-participation

When Title 24 Modeling and HVAC Design Meet — Real World Case Studies



Nick Brown

Owner/Builder, Net Zero Nest + ADU President, Build Smart Group

Net Zero Nest:

All-Electric ADU:

Instructor for various classes:

Completed in 2016

Completed in 2022

All-Electric Homes

1,950 sf, 3 BR & 3 Bath

576 sf, 1 BR & 1 Bath

Demyth-defying Heat Pumps

4.4 kW PV array (16 panels)

SIPs Envelope

Energy Standards for Residential Architects

High-performance Walls

Net Zero Carbon

Net-zero Design

Instructor – Russell King, M.E.

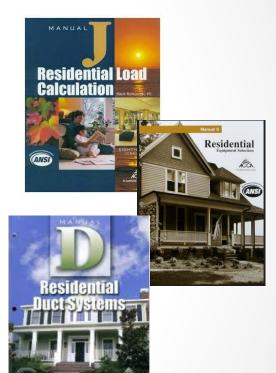
- Licensed Mechanical Engineer
- CEO/Founder of Coded Energy, Inc., developers of Kwik Model 3D software.
- 35+ years experience with residential HVAC and energy efficiency
- May 30 @ 2pm, similar class with Nick Brown but demonstrating a new software that speaks both Title 24 and ACCA J/S/D.

Why Should Energy Consultants Do HVAC Load Calculations?

- Load calcs are easy! (equipment selection and duct design take much more experience – let the contractor do those)
- 2. It requires pretty much exactly the same inputs as an energy model.
- 3. An annual energy simulation is 8760 load calculations.
- 4. Most HVAC Contractors are not doing load calcs, even though they are required by code (not well enforced).
- 5. Energy consultants are good a getting this information from plans into the software.
- New software will allow a house model to be used for both and energy model and a load calc.
- 7. The 2025 code will put a much bigger emphasis on proper sizing.

About ACCA Manuals J/S/D

- ACCA is Air Conditioning Contractors of America, the largest HVAC trade association in the United States.
- They write and publish ANSI approved manuals on residential and nonresidential HVAC design
- Widely recognized as the industry standard for HVAC design (though not the only recognized standard).



About ACCA Manuals J/S/D

- California Energy Code <u>requires</u> ACCA Manual J and D (or equal) for all *new* residential HVAC systems, whether in a new house or an existing house.
- More and more building departments are starting to enforce this requirement.
- HVAC contractors should be doing it anyway!

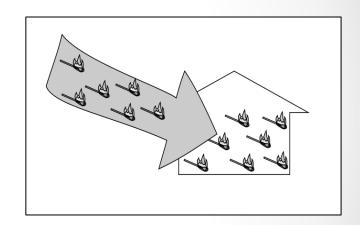
- Basic Design Manuals
 - Manual J Residential Load Calculations
 - Manual S Equipment Selection
 - Manual D Duct Design
- Other Related Manuals
 - Manual RS Residential System Design (overview)
 - Manual T Terminal Selection (registers)
 - Manual H Heat Pumps
 - Manual LLH Low Load Homes
- Other Standards and Checklists. (QI, QM, etc.)
- www.acca.org

Definitions

British Thermal Unit (BTU)

This is a unit of heat energy that is approximately equal to the heat stored in a wooden kitchen match.

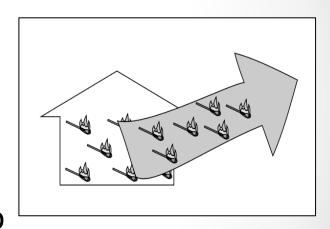
Heat moves at different *rates*. We express this in BTUs per hour (Btuh)



Definitions

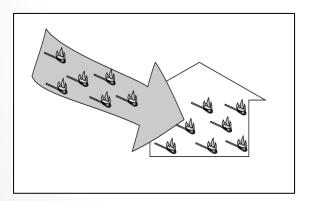
Cooling Load

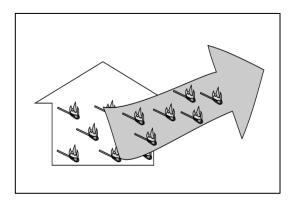
- In the summer, the BTUs are more concentrated outside the house than inside, so heat will naturally come into the house.
- The cooling load is the number of BTUs per hour that the air conditioner must <u>remove</u> at design conditions.



Definitions

Heating Load

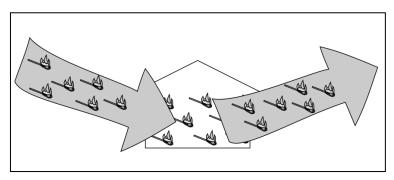

- In the winter the BTUs are more concentrated inside the house than outside, so heat will naturally leave the house.
- Heating load is the number of BTUs that the heater (heat pump or furnace) must <u>add</u> each hour at design conditions.



Definitions

To maintain a **constant temperature** in a house the rate of heat coming in must **equal** the rate of heat going out.

Definitions


The **capacity** of the heating or cooling equipment is the *output* of the equipment in BTUs per hour. Think of it as the *supply*.

The **load** of the house is what the house *needs* in BTUs per hour to maintain a constant temperature at design conditions. Think of it as the *demand*.

Definitions

Good equipment sizing is the ability to match the equipment's supply to the house's demand.

Images from HVAC 1.0 – Introduction to Residential HVAC Systems

Definitions

Design conditions are the specified indoor and outdoor temperatures at which the loads are calculated.

- These are not the very worst temperatures expected each summer or winter.
- It would not be wise to design to such temperatures because these rarely occur.

Definitions

Design conditions are the specified indoor and outdoor temperatures at which the loads are calculated.

- The system needs to also work at milder conditions.
- If we design to really bad conditions, the equipment would be oversized for most of the season.

Definitions

Design conditions are the specified indoor and outdoor temperatures at which the loads are calculated.

- The difference between the indoor design temperature and the outdoor design temperature is referred to as the "Delta T".
- There is a delta T for the summer and a delta T for the winter.

The Importance of Good Design: Equipment Sizing

Load Calculations are critical to properly sized heating and cooling equipment.

For Air Conditioners:

- Undersizing may cause house not to cool well on very hot days.
- Oversizing can cause excess stratification, uneven temperature distribution. Plus, higher electric bills and shortened equipment life.

The Importance of Good Design: Equipment Sizing

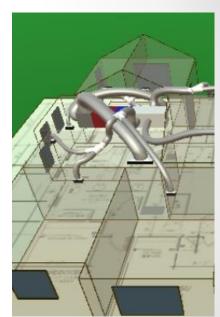
Load Calculations are critical to properly sized heating and cooling equipment.

For **Heaters (heat pumps or furnaces)**:

- Undersizing may cause house not to heat well on very cold days.
- Oversizing can cause excess stratification, uneven temperature distribution. Plus, higher utility bills and shortened equipment life.

The Importance of Good Design: Equipment Sizing

- The negative impacts of Oversized Equipment can be reduced by using dual or variable capacity units.
- The negative impacts of both Oversized and Undersized Equipment can be reduced with good duct design and good system airflow.


The Importance of Good Design: Equipment Sizing

- Historically, the most common method of equipment sizing was rules of thumb and trial and error.
- This almost always led to oversized equipment (and undersized ducts).

The Importance of Good Design: Duct Sizing

- Since the temperature of the *entire house* (or zone) is determined by *one location* (at the thermostat) it is important for even temperature distribution that conditioned air be distributed evenly throughout the home.
- This is done by sizing the ducts to deliver the proper airflow to each room (register).

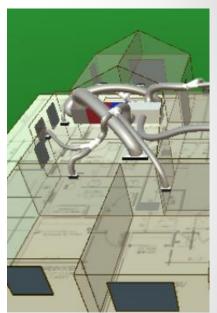
KWIK MODEL3D

The Importance of Good Design: Duct sizing

- Target room airflows need to be determined from room-by-room loads

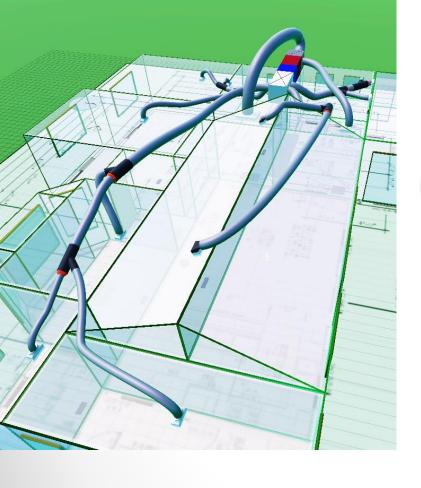
 you need to know what the load of a room is relative to other rooms.
- General undersizing of all ducts, especially return ducts, will reduce total system fan flow, which will reduce capacity and efficiency of system.

KWIK MODEL3D


The Importance of Good Design: <u>Duct sizing</u>

- Undersizing one or two ducts relative to the other ducts in the house will cause poor air balance.
- This will result in uneven temperature distribution in the house (some rooms warmer or cooler than others)
- This is made even worse by low overall airflow.

KWIK MODEL3D


- Equipment cannot be properly sized unless you can accurately determine the capacity at design conditions. (Supply)
- Equipment cannot be properly sized unless you know the load of the house. (Demand)

KWIK MODEL3D

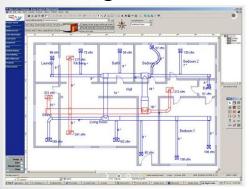
- Ducts cannot be properly sized unless you know how to distribute the air.
- To know how to distribute the air, you need room by room load calculations.

Overview of HVAC Design Process

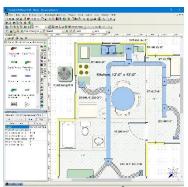
The Process

The basic steps in designing a typical ducted central system for a home are:

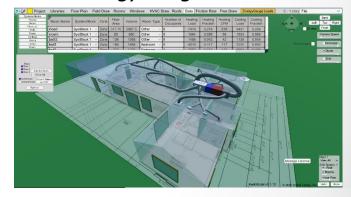
- 1. Collect information about the house
- 2. Perform room-by-room load calculations (Manual J)
- 3. Select equipment to meet the total loads (Manual S)
- 4. Design the distribution system (Manual D)



Overview of HVAC Design Process

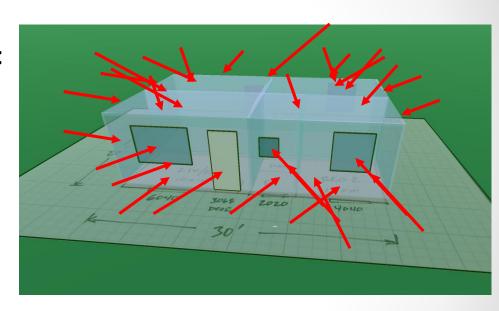

The Process

There are several ACCA approved *software programs* available to help you through this process. Examples:


Right-Suite® by Wrightsoft

RHVAC by Elite Software

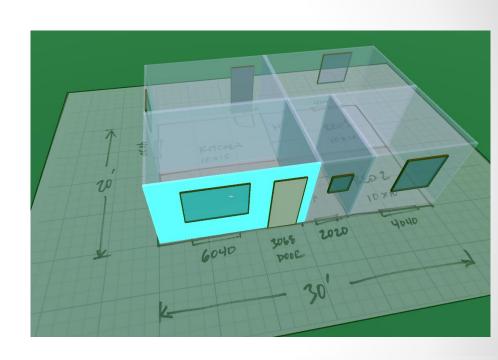
Kwik Model® with EnergyGauge Loads



Overview of HVAC Design Process

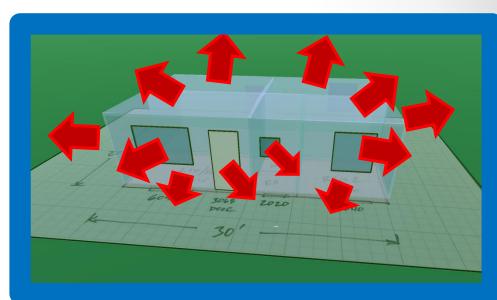
Step 1. Collect Information About the House

- What you actually need areas for:
 - ceilings,
 - walls,
 - doors,
 - and floors,
 - Plus, window areas
 (and orientations = N, S, E, W)
- These are the surfaces that will conduct heat into and out of the house.



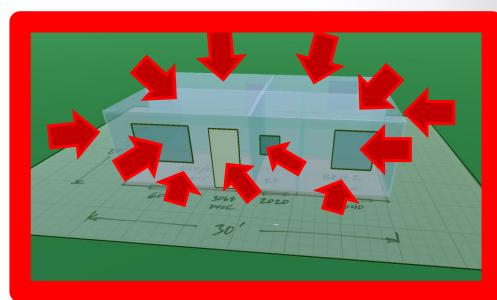
(This should all sound very familiar.)

Step 1. Collect Information About the House


- You will need this on a roomby-room basis if you plan to also size the ducts.
- Keeping track of all these surfaces is challenging.
- This is where design software is most helpful.

Step 1. Collect Information About the House

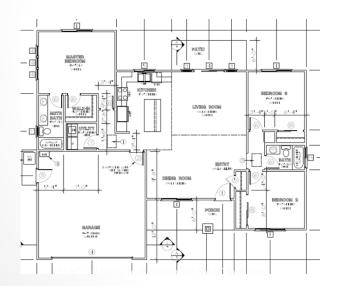
- The goal is to accurately estimate the conduction, convection and radiation heat transfer between the inside and outside of the house.
- You need to do it for winter

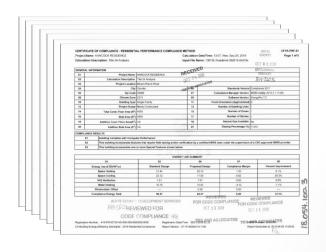


Winter

Step 1. Collect Information About the House

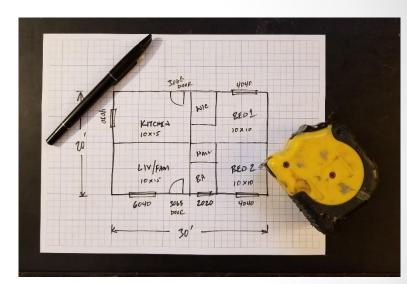
- The goal is to accurately estimate the conduction, convection and radiation heat transfer between the inside and outside of the house.
- And for summer




Summer

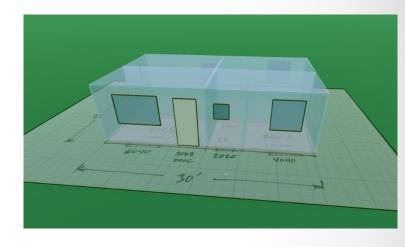
Step 1. Collect Information About the House

 If you are designing a system for a new house, most of the information you will need is on the building plans and energy compliance docs.



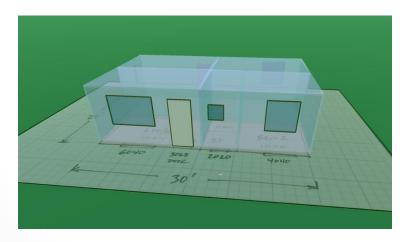
Step 1. Collect Information About the House

 If you are designing a system for an <u>existing</u> house, you may have to create your own plans by sketching a floor plan based on field measurements.


 Check out CubiCasa. It's a free phone app that creates a very good floor plan.

Step 1. Collect Information About the House

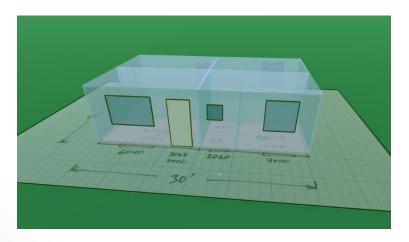
- Then you will need information about these surfaces, such as
 - what kind of surface,
 - how much insulation,
 - what kind of windows, etc.



Step 2. Perform Room-by-Room Load Calculations

There are two basic kinds of load calculations.

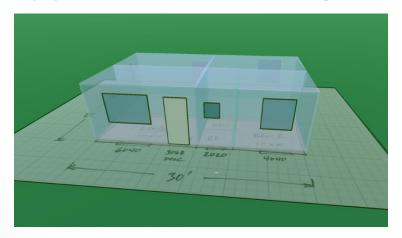
 One kind is a whole house load calculation that lumps the entire house (or zone) into one total value, which can be used to size the equipment. (aka "Block" loads)



Step 2. Perform Room-by-Room Load Calculations

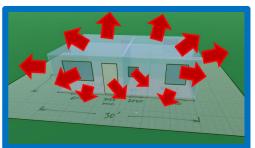
There are two basic kinds of load calculations.

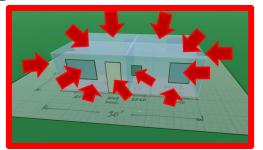
 The other kind is a room-by-room load calculation, which breaks the house into rooms and calculates a heating and cooling load for each individual room.



Step 2. Perform Room-by-Room Load Calculations

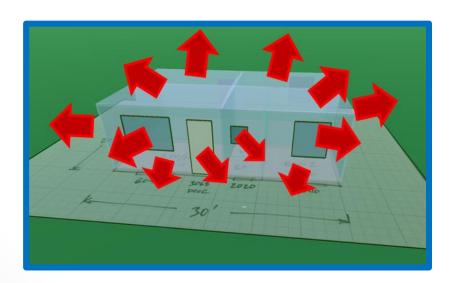
There are two basic kinds of load calculations.


- Room-by-room load calculations are important for designing a distribution system.
- These help you distribute the heating and cooling correctly.



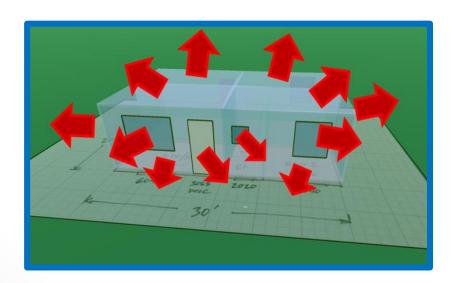
Step 2. Perform Room-by-Room Load Calculations

- There are load calculations for both heating (winter) and cooling (summer) loads.
 - Winter = Heat leaving the house
 - Summer = Heat coming into the house

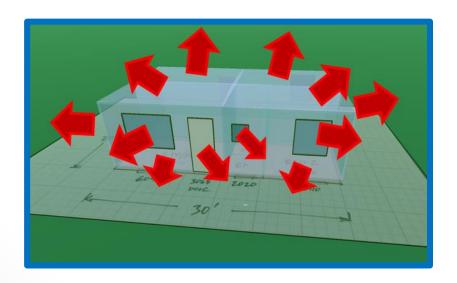


Let's look at heating load calculations first.

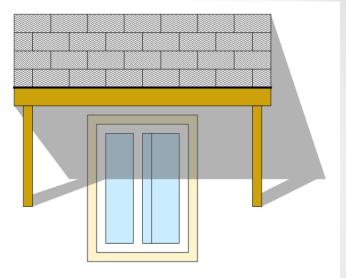
Step 2. Perform Room-by-Room Load Calculations

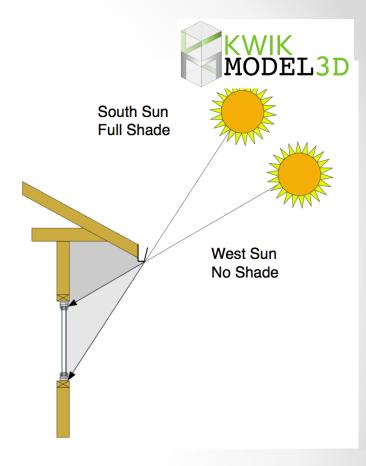

 A heating load calculation is a sum of all of the BTU losses (convection, conduction and radiation) that occur when it is a <u>certain delta T</u>.

Step 2. Perform Room-by-Room Load Calculations


 The delta T is determined by two temperatures called the winter indoor and outdoor design temperatures.

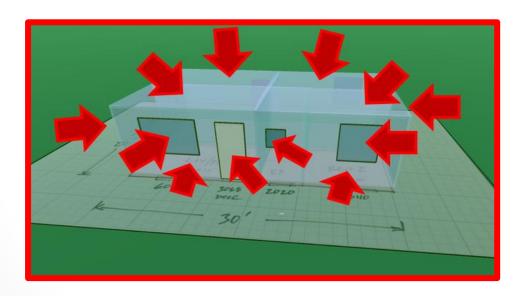
Step 2. Perform Room-by-Room Load Calculations


 For heating, assume that these occur at night when there are no solar gains to offset heating load


Step 2. Perform Room-by-Room Load Calculations

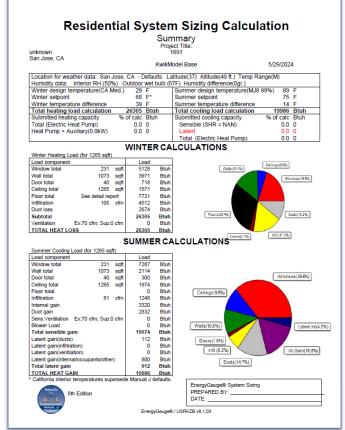
- Cooling loads are similar except that they are more complicated because solar gains are <u>not</u> ignored.
- Solar gains are a big part of the cooling loads.

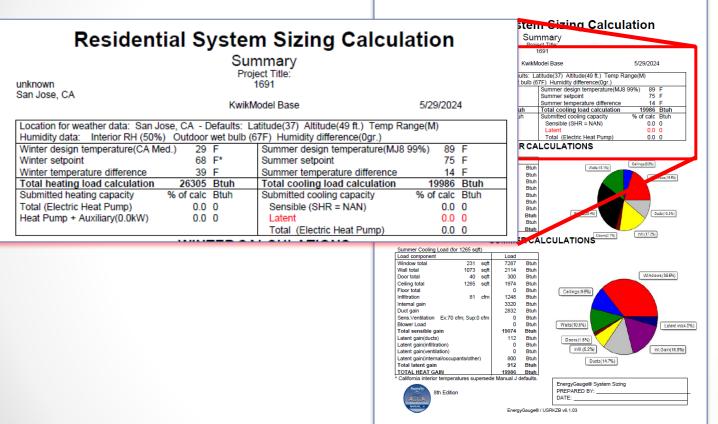
Step 2. Perform Room-by-Room Load Calculations


 What makes them so complicated is that solar gains are affected by <u>orientation</u> of windows and by shading from overhangs and interior shading devices such as drapes or blinds.

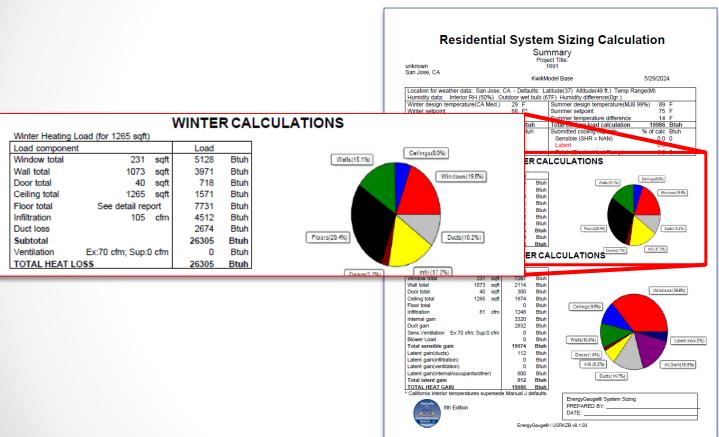
Step 2. Perform Room-by-Room Load Calculations

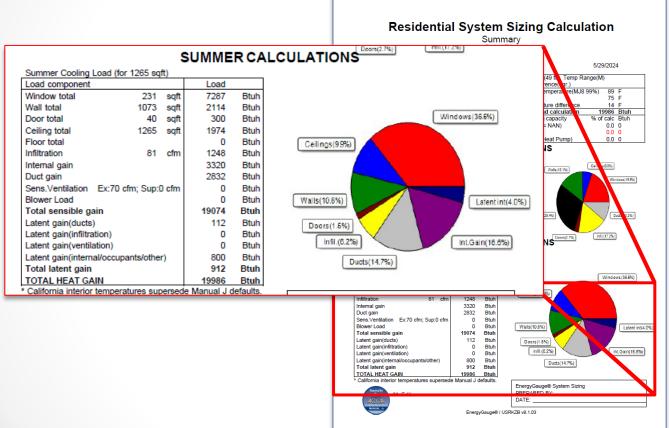
 Cooling loads and the subsequent sizing of equipment is much more precise and involved than heating loads.




Step 2. Perform Room-by-Room Load Calculations

- The software will use that information to select the correct value from the Manual J tables to determine the heat transfer through each and every surface.
- As you can imagine, this is a lot of information to keep track of, especially for room-by-room loads.





Load Calc Work Flow

COMPLIANCE: Tidy up model, **COMPLIANCE:** check inputs, **Export Model** get to comply, to CBECC-RES send CF1R to client Client uses [If accepted] CF1R in permit Add Load Calcs Build model in set & load calcs to T24 quote Kwik Model to choose LOAD CALCS: CBECC **HVAC** system Run Energy LOAD CALCS: Gauge, size Import Model HVAC systems, to Kwik Model generate **Energy Gauge** reports to send to client

Summary Statistics – first 9 jobs

Project	Front A	Front B	Gran Cielo	Carr	Liberati	Pennapl ex	Lone Pine	Neme	Via del Rey
Square Feet	2354	3,632	3,800	3,977	5,009	1,520	400	1,932	2,323
Tonnage	2	4	7	5	5	1.5	1	2	3
Sqft/ton	1,175	900	542	800	1,000	1,000	400	1,000	800
Notes	CZ5 new	CZ5 new	CZ4 Aluminum glazing	CZ6 EAA 36% Aluminum glazing	CZ6 new 38% Aluminum glazing	CZ6 new ICF	CZ16 new hotel	CZ6 EAA	CZ9 EAA

The End

Thank You

russ@coded-energy.com

Questions about Title 24?

3C-REN offers a free Code Coach Service

Closing

- Continuing Education Units Available
 - Contact nnewman@countyofsb.org for AIA and ICC LUs
- Coming to Your Inbox Soon!
 - Slides, Recording, & Survey Please Take It and Help Us Out!
- Upcoming Courses:
 - May 31 <u>Practical Ways to Address Embodied Carbon</u>
 - May 31- <u>Higher Performance Residential Remodels</u>
 - June 5 <u>Panel Detectives- Electrical Panel Assessments for Heat Pump Installers</u>
 - June 6 <u>Electrification for REALTORS</u>
 - June 11 Zero Net Energy for Builders
- Visit <u>www.3c-ren.org/events</u> for our full catalog of trainings.

Thank you!

For more info: 3c-ren.org

For questions: info@3c-ren.org

TRI-COUNTY REGIONAL ENERGY NETWORK

SAN LUIS OBISPO · SANTA BARBARA · VENTURA